skip to main content


Title: High-resolution seismic stratigraphy of Late Pleistocene Glacial Lake Iroquois and its Holocene successor: Oneida Lake, New York
Oneida Lake, New York, is the remnant of Glacial Lake Iroquois, a large proglacial lake that delivered fresh water to the Atlantic Ocean during the last deglaciation. The formation of Glacial Lake Iroquois and its subsequent drainage into the Atlantic Ocean via the Mohawk Valley was a significant shift in the routing of Laurentide Ice Sheet meltwater to the east instead of south via the Allegheny or Susquehanna Rivers. Catastrophic drainage of Glacial Lake Iroquois into the Atlantic Ocean via the Champlain Valley is interpreted as the meltwater pulse responsible for the Intra-Allerod cold stadial. Therefore, understanding the evolution of Glacial Lake Iroquois has significant implications for understanding late Pleistocene paleoclimate. High-resolution CHIRP seismic reflection data provides insight into the evolution of Glacial Lake Iroquois and Oneida Lake. Three seismic units image distinct stages of the Oneida Basin. Unit 1 is interpreted as proglacial lake deposits that overlie glacial till. Unit 2 is interpreted as sediments deposited when the Oneida Basin became isolated from Glacial Lake Iroquois and Unit 3 is interpreted as lacustrine sediments of the modern lake. Distally sourced turbidites possibly triggered by seismic activity or ice sheet meltwater pulses are represented as reflection- free acoustic facies that infill topographic lows and range in thickness from ~1–5m within otherwise conformable proglacial lake deposits. Local slump deposits imaged at the boundary between Unit 1 and 2 were likely triggered by the drainage of Glacial Lake Iroquois. Wave cut terraces indicative of a low stand on the upper bounding surface of Unit 2 are likely the result of drier conditions during the Holocene Hypsithermal. Furthermore, preservation of this low stand suggests a rapid rise in lake level, possibly the result of the same transition to a wetter climate responsible for the Nipissing transgression observed in the Laurentian Great lakes.  more » « less
Award ID(s):
1804460
NSF-PAR ID:
10164087
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Palaeogeography palaeoclimatology palaeoecology
Volume:
534
ISSN:
1872-616X
Page Range / eLocation ID:
109286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake. 
    more » « less
  2. Abstract Ice streams are sites of ice-sheet drainage and together with other processes, such as calving, have an impact on deglaciation rates and ice-sheet mass balance. Proglacial lake deposits provide records of ice-sheet deglaciation and have the potential to supplement other paleoclimate records. Oneida Lake, northeastern USA, contains a thick proglacial lake sequence that buries evidence of ice streaming and a paleo-calving margin that developed during retreat of the Laurentide Ice Sheet. Previous high-resolution digital elevation models identified the Oneida Ice Stream from glacial landforms northwest of the lake. In this study, we utilize seismic refractions from a multichannel seismic (MCS) reflection dataset to estimate the thickness of glacial deposits using seismic tomography. With this method we constrain the depth to top of Paleozoic strata, especially in areas where the reflection data yielded poor outcomes and validate our reflection data in regions of good coverage. We demonstrate that where long offset seismic data are available, the first-arrival tomography method is useful in studies of formerly glaciated basins. Our study identifies a ~108 m thick sedimentary section and potentially long paleoclimate record in Oneida Lake, and identifies a paleotopographic low that likely encouraged formation of the Oneida Ice Stream. 
    more » « less
  3. null (Ed.)
    The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic Ice Sheet outside the Antarctic Peninsula, including changes caused by substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct record of glacial history offshore from a drainage basin that receives ice exclusively from the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, warm Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting of the underside of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deep-water incursions control its position on the shelf; 4. To find evidence for earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called Resolution Drift, and penetrated to 794 m with 90% recovery. We collected almost-continuous cores from the Pleistocene through the Pliocene and into the late Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as bottom-water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. An unfortunate injury to a member of the ship's crew cut the expedition short by one week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to precisely indicate the position of ice or retreat of the ice sheet on the shelf. However, these sediments contained in the cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by higher microfossil abundance, greater bioturbation, and higher counts of IRD alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published records from the region suggests that the units interpreted as records of warmer time intervals in the core tie to interglacial periods and the units interpreted as deposits of colder periods tie to glacial periods. The cores from the two drill sites recovered sediments of purely terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded sands and gravel transported downslope from the shelf to the abyssal plain. The channel is likely the path of such sediments transported downslope by turbidity currents or other sediment-gravity flows. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica at least during longer time periods since the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy not only for the Amundsen Sea rise but also for the western Amundsen Sea along the Marie Byrd Land margin through a connecting network of seismic lines. 
    more » « less
  4. The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are: 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf; 4. To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. A medical evacuation cut the expedition short by 1 week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods. Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines. 
    more » « less
  5. In the Kaokoveld (NW Namibia), several modern river valleys are exhuming late Paleozoic glacial valleys cut onto Precambrian fold belts. They represent one of the most prominent late Paleozoic exhumed glacial landscapes and are widely considered to have been carved by outlet glaciers that drained the Windhoek Ice Sheet and fed marginal lobes that flowed into the ParanĂ¡ Basin, southern Brazil. No detailed research exists on the glacial sedimentary fill of these valleys. Two study sites in the Khumib and Kunene rivers catchment were analyzed for depositional environments, glacial cyclicity, and relative timing of deposition recorded in the Dwyka Group. The Dwyka strata are confined within these valleys and dip up to 30 degrees outward away from the valley walls becoming horizontal near the axis of the valleys. Sedimentary units include: 1) thick successions of diamictite- and conglomerate-bearing clinoforms containing boulders up to 2 m in diameter generated by sediment-laden meltwater, sediment gravity flows and iceberg rainout with intraformational grooved surfaces generated by coeval iceberg scour; 2) laminated, fine-grained sandstone/mudstone rhythmites with dropstones, dump structures, interbedded rainout diamictites and sole mark-bearing finegrained massive to current-rippled sandstones (turbidites). These units were deposited in the distal zones of a subaqueous outwash system; 3) folded and sheared intervals of the above facies interpreted as having been deformed subglacially and in ice-marginal settings during ice advance. Ice advance is indicated by the occurrence of overlying erosional based conglomerates interpreted as outwash deposits; and 4) a capping succession of fine-grained massive, horizontally laminated, and current-rippled sandstones with sole marks and laminated rhythmites with convolute bedding interpreted as turbidity flow deposits generated following glaciers retreat. The stacking of these units is consistent with the occurrence of oscillating margins of temperate, tidewater termini of fast flowing ice with deposition occurring in morainal banks or grounding-zone wedges during at least two glacial advance-retread cycles. The morphology of the valleys and their sedimentary infill suggest that they were shaped by ice streams during the Late Paleozoic Ice Age. 
    more » « less