The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake.
more »
« less
High-resolution seismic stratigraphy of Late Pleistocene Glacial Lake Iroquois and its Holocene successor: Oneida Lake, New York
Oneida Lake, New York, is the remnant of Glacial Lake Iroquois, a large proglacial lake that delivered fresh water to the Atlantic Ocean during the last deglaciation. The formation of Glacial Lake Iroquois and its subsequent drainage into the Atlantic Ocean via the Mohawk Valley was a significant shift in the routing of Laurentide Ice Sheet meltwater to the east instead of south via the Allegheny or Susquehanna Rivers. Catastrophic drainage of Glacial Lake Iroquois into the Atlantic Ocean via the Champlain Valley is interpreted as the meltwater pulse responsible for the Intra-Allerod cold stadial. Therefore, understanding the evolution of Glacial Lake Iroquois has significant implications for understanding late Pleistocene paleoclimate. High-resolution CHIRP seismic reflection data provides insight into the evolution of Glacial Lake Iroquois and Oneida Lake. Three seismic units image distinct stages of the Oneida Basin. Unit 1 is interpreted as proglacial lake deposits that overlie glacial till. Unit 2 is interpreted as sediments deposited when the Oneida Basin became isolated from Glacial Lake Iroquois and Unit 3 is interpreted as lacustrine sediments of the modern lake. Distally sourced turbidites possibly triggered by seismic activity or ice sheet meltwater pulses are represented as reflection- free acoustic facies that infill topographic lows and range in thickness from ~1–5m within otherwise conformable proglacial lake deposits. Local slump deposits imaged at the boundary between Unit 1 and 2 were likely triggered by the drainage of Glacial Lake Iroquois. Wave cut terraces indicative of a low stand on the upper bounding surface of Unit 2 are likely the result of drier conditions during the Holocene Hypsithermal. Furthermore, preservation of this low stand suggests a rapid rise in lake level, possibly the result of the same transition to a wetter climate responsible for the Nipissing transgression observed in the Laurentian Great lakes.
more »
« less
- Award ID(s):
- 1804460
- PAR ID:
- 10164087
- Date Published:
- Journal Name:
- Palaeogeography palaeoclimatology palaeoecology
- Volume:
- 534
- ISSN:
- 1872-616X
- Page Range / eLocation ID:
- 109286
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ice streams are sites of ice-sheet drainage and together with other processes, such as calving, have an impact on deglaciation rates and ice-sheet mass balance. Proglacial lake deposits provide records of ice-sheet deglaciation and have the potential to supplement other paleoclimate records. Oneida Lake, northeastern USA, contains a thick proglacial lake sequence that buries evidence of ice streaming and a paleo-calving margin that developed during retreat of the Laurentide Ice Sheet. Previous high-resolution digital elevation models identified the Oneida Ice Stream from glacial landforms northwest of the lake. In this study, we utilize seismic refractions from a multichannel seismic (MCS) reflection dataset to estimate the thickness of glacial deposits using seismic tomography. With this method we constrain the depth to top of Paleozoic strata, especially in areas where the reflection data yielded poor outcomes and validate our reflection data in regions of good coverage. We demonstrate that where long offset seismic data are available, the first-arrival tomography method is useful in studies of formerly glaciated basins. Our study identifies a ~108 m thick sedimentary section and potentially long paleoclimate record in Oneida Lake, and identifies a paleotopographic low that likely encouraged formation of the Oneida Ice Stream.more » « less
-
In July 2019, approximately 217 km of 2-D multichannel seismic reflection data were collected along 27 profiles on Oneida Lake, New York using a 120 channel Seamux™ solid-towed array marine streamer with a 3.125 m group interval and a maximum offset of ~400 meters. Data were recorded in SEG-D format on a NTRS2 recording system. The seismic source was a 4x10 in3 Bolt 2800 LLX airgun array and was towed at ~1 meter depth to allow for venting of seismic source air bubbles. Gun pressures varied from 1500 to 2000 PSI. Air guns were fired every 6.25 m distance using two high resolution (Trimble) GPS receivers for navigation. This geometry provided 30-fold seismic coverage with a common midpoint (CMP) interval of 1.56 m. Record length is 2 seconds and the sample rate is 0.25 ms. These raw field shot data files are in SEG-D format, bundled by seismic line. The files were acquired as part of a project called P2C2: A High Resolution Paleoclimate Archive of Termination I in Oneida Lake and Glacial Lake Iroquois Sediments. Funding was provided through NSF grant EAR18-04460 to Syracuse University.more » « less
-
Abstract. The Greenland Ice Sheet (GrIS) is losing mass as the climate warms through both increased meltwater runoff and ice discharge at marine-terminating sectors. At the ice sheet surface, meltwater runoff forms a dynamic supraglacial hydrological system which includes stream and river networks and large supraglacial lakes (SGLs). Streams and rivers can route water into crevasses or into supraglacial lakes with crevasses underneath, both of which can then hydrofracture to the ice sheet base, providing a mechanism for the surface meltwater to access the bed. Understanding where, when, and how much meltwater is transferred to the bed is important because variability in meltwater supply to the bed can increase ice flow speeds, potentially impacting the hypsometry of the ice sheet in grounded sectors, and iceberg discharge to the ocean. Here we present a new, physically based, supraglacial hydrology model for the GrIS that is able to simulate (a) surface meltwater routing and SGL filling; (b) rapid meltwater drainage to the ice sheet bed via the hydrofracture of surface crevasses both in and outside of SGLs; (c) slow SGL drainage via overflow in supraglacial meltwater channels; and, by offline coupling with a second model, (d) the freezing and unfreezing of SGLs from autumn to spring. We call the model the Supraglacial Hydrology Evolution and Drainage (or SHED) model. We apply the model to three study regions in southwest Greenland between 2015 and 2019 (inclusive) and evaluate its performance with respect to observed supraglacial lake extents and proglacial discharge measurements. We show that the model reproduces 80 % of observed lake locations and provides good agreement with observations in terms of the temporal evolution of lake extent. Modelled moulin density values are in keeping with those previously published, and seasonal and inter-annual variability in proglacial discharge agrees well with that which is observed, though the observations lag the model by a few days since they include transit time through the subglacial system, while the model does not. Our simulations suggest that lake drainage behaviours may be more complex than traditional models suggest, with lakes in our model draining through a combination of both overflow and hydrofracture and with some lakes draining only partially and then refreezing. This suggests that, in order to simulate the evolution of Greenland's surface hydrological system with fidelity, a model that includes all of these processes needs to be used. In future work, we will couple our model to a subglacial model and an ice flow model and thus use our estimates of where, when, and how much meltwater gets to the bed to understand the consequences for ice flow.more » « less
-
Abstract As ice sheets load Earth's surface, they produce ice‐marginal depressions which, when filled with meltwater, become proglacial lakes. We include self‐consistently evolving proglacial lakes in a glacial isostatic adjustment (GIA) model and apply it to the Laurentide ice sheet over the last glacial cycle. We find that the locations of modeled lakes and the timing of their disappearance is consistent with the geological record. Lake loads can deflect topography by >10 m, and volumes collectively approach 30–45 cm global mean sea‐level equivalent. GIA increases deglaciation‐phase lake volume up to five‐fold and average along‐ice‐margin depth ≤90 m compared to glaciation‐phase ice volume analogs—differences driven by changes in the position and size of the peripheral bulge. Since ice‐marginal lake depth affects grounding‐line outflow, GIA‐modulated proglacial lake depths could affect ice‐sheet mass loss. Indeed, we find that Laurentide ice‐margin retreat rate sometimes correlates with proglacial lake presence, indicating that proglacial lakes aid glacial collapse.more » « less