skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cleaning up our water: reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice-nucleating particles
Abstract. Droplet freezing techniques (DFTs) have been used for half a century tomeasure the concentration of ice-nucleating particles (INPs) in the atmosphereand determine their freezing properties to understand the effects of INPs onmixed-phase clouds. The ice nucleation community has recently adopted dropletfreezing assays as a commonplace experimental approach. These dropletfreezing experiments are often limited by contamination that causesnonhomogeneous freezing of the “pure” water used to generate the dropletsin the heterogeneous freezing temperature regime that is being measured.Interference from the early freezing of water is often overlooked and notfully reported, or measurements are restricted to analyzing the moreice-active INPs that freeze well above the temperature of the backgroundwater. However, this avoidance is not viable for analyzing the freezingbehavior of less active INPs in the atmosphere that still have potentiallyimportant effects on cold-cloud microphysics. In this work we review a numberof recent droplet freezing techniques that show great promise in reducing theseinterferences, and we report our own extensive series of measurements usingsimilar methodologies. By characterizing the performance of differentsubstrates on which the droplets are placed and of different pure watergeneration techniques, we recommend best practices to reduce theseinterferences. We tested different substrates, water sources, dropletmatrixes, and droplet sizes to provide deeper insight into what methodologiesare best suited for DFTs. Approaches for analyzing droplet freezingtemperature spectra and accounting and correcting for the background “pure”water control spectrum are also presented. Finally, we propose experimentaland data analysis procedures for future homogeneous and heterogeneous icenucleation studies to promote a more uniform and reliable methodology thatfacilitates the ready intercomparison of ice-nucleating particles measured byDFTs.  more » « less
Award ID(s):
1554941
PAR ID:
10164336
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
11
Issue:
9
ISSN:
1867-8548
Page Range / eLocation ID:
5315 to 5334
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to −1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of −500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations. 
    more » « less
  2. Abstract. Some biological particles, such as Snomax, are very active ice nucleating particles, inducing heterogeneous freezing in supercooled water at temperatures above −15 and up to −2 °C. Despite their exceptional freezing abilities, large uncertainties remain regarding the atmospheric abundance of biological ice nucleating particles, and their contribution to atmospheric ice nucleation. It has been suggested that small biological ice nucleating macromolecules or fragments can be carried on the surfaces of dust and other atmospheric particles. This could combine the atmospheric abundance of dust particles with the ice nucleating strength of biological material to create strongly enhanced and abundant ice nucleating surfaces in the atmosphere, with significant implications for the budget and distribution of atmospheric ice nucleating particles, and their consequent effects on cloud microphysics and mixed-phase clouds. The new critical surface area g framework that was developed by Beydoun et al. (2016) is extended to produce a heterogeneous ice nucleation mixing model that can predict the freezing behavior of multicomponent particle surfaces immersed in droplets. The model successfully predicts the immersion freezing properties of droplets containing Snomax bacterial particles across a mass concentration range of 7 orders of magnitude, by treating Snomax as comprised of two distinct distributions of heterogeneous ice nucleating activity. Furthermore, the model successfully predicts the immersion freezing behavior of a low-concentration mixture of Snomax and illite mineral particles, a proxy for the biological material–dust (bio-dust) mixtures observed in atmospheric aerosols. It is shown that even at very low Snomax concentrations in the mixture, droplet freezing at higher temperatures is still determined solely by the second less active and more abundant distribution of heterogeneous ice nucleating activity of Snomax, while freezing at lower temperatures is determined solely by the heterogeneous ice nucleating activity of pure illite. This demonstrates that in this proxy system, biological ice nucleating particles do not compromise their ice nucleating activity upon mixing with dust and no new range of intermediary freezing temperatures associated with the mixture of ice nucleating particles of differing activities is produced. The study is the first to directly examine the freezing behavior of a mixture of Snomax and illite and presents the first multicomponent ice nucleation model experimentally evaluated using a wide range of ice nucleating particle concentration mixtures in droplets. 
    more » « less
  3. null (Ed.)
    Abstract. Glaciation in mixed-phase clouds predominantly occurs through theimmersion-freezing mode where ice-nucleating particles (INPs) immersedwithin supercooled droplets induce the nucleation of ice. Modelrepresentations of this process currently are a large source of uncertaintyin simulating cloud radiative properties, so to constrain these estimates,continuous-flow diffusion chamber (CFDC)-style INP devices are commonly usedto assess the immersion-freezing efficiencies of INPs. This study explored anew approach to operating such an ice chamber that provides maximumactivation of particles without droplet breakthrough and correction factorambiguity to obtain high-quality INP measurements in a manner thatpreviously had not been demonstrated to be possible. The conditioningsection of the chamber was maintained at −20 ∘C and water relative humidity (RHw) conditions of 113 % to maximize the droplet activation,and the droplets were supercooled with an independentlytemperature-controlled nucleation section at a steady cooling rate(0.5 ∘C min−1) to induce the freezing of droplets andevaporation of unfrozen droplets. The performance of the modified compactice chamber (MCIC) was evaluated using four INP species: K-feldspar,illite-NX, Argentinian soil dust, and airborne soil dusts from an arableregion that had shown ice nucleation over a wide span of supercooledtemperatures. Dry-dispersed and size-selected K-feldspar particles weregenerated in the laboratory. Illite-NX and soil dust particles were sampledduring the second phase of the Fifth International Ice Nucleation Workshop(FIN-02) campaign, and airborne soil dust particles were sampled from anambient aerosol inlet. The measured ice nucleation efficiencies of modelaerosols that had a surface active site density (ns) metric were higher but mostly agreed within 1 order of magnitude compared to results reported in the literature. 
    more » « less
  4. null (Ed.)
    We generate water-rich aerosols containing 1-propanol and 1-pentanol in a supersonic nozzle to study the effects of these solutes on the freezing behavior of water. Condensation and freezing are characterized by two complementary techniques, pressure trace measurements and Fourier Transform Infrared spectroscopy. When 1-pentanol and 1-propanol are present, condensation occurs at higher temperatures because particle formation from the vapor phase is enhanced by the decrease in interfacial free energy of mixed aqueous-alcohol critical clusters relative to those of pure water. FTIR results suggest that when ∼6 nm radius droplets freeze, the tetrahedral structure of the ice is well preserved up to an overall alcohol mole fraction of 0.031 for 1-propanol and 0.043 for 1-pentanol. In this concentration range, the ice nucleation temperature decreases continuously with increasing 1-propanol concentration, whereas the onset of freezing is not significantly perturbed by 1-pentanol up to a mole fraction of 0.03. Furthermore, once freezing starts the ice nucleation rates in the aqueous-alcohol droplets are very close to those for pure water. In contrast, at the highest mole fractions of either alcohol it is not clear whether droplets freeze to form crystalline ice since the final state of the particles cannot be adequately characterized with the available experimental techniques. 
    more » « less
  5. Abstract Cirrus ice crystals are produced heterogeneously on ice‐nucleating particles (INPs) and homogeneously in supercooled liquid solution droplets. They grow by uptake of water molecules from the ice‐supersaturated vapor. The precursor particles, characterized by disparate ice nucleation abilities and number concentrations, compete for available vapor during ice formation events. We investigate cirrus formation events systematically in different temperature and updraft regimes, and for different INP number concentrations and time‐independent nucleation efficiencies. We consider vertical air motion variability due to mesoscale gravity waves and effects of supersaturation‐dependent deposition coefficients for water molecules on ice surfaces. We analyze ice crystal properties to better understand the dynamics of competing nucleation processes. We study the reduction of ice crystal numbers produced by homogeneous freezing due to INPs in both, individual simulations assuming constant updraft speeds and in ensemble simulations based on a stochastic representation of vertical wind speed fluctuations. We simulate and interpret probability distributions of total nucleated ice crystal number concentrations, showing signatures of homogeneous and heterogeneous nucleation. At typically observed, mean updraft speeds (≈15 cm s−1) competing nucleation should occur frequently, even at rather low INP number concentrations (<10 L−1). INPs increase cirrus occurrence and may alter cirrus microphysical properties without entirely suppressing homogeneous freezing events. We suggest to improve ice growth models, especially for low cirrus temperatures (<220 K) and low ice supersaturation (<0.3). 
    more » « less