skip to main content


Title: Development of a Steel Bridge Climbing Robot
Motivated by a high demand for automated inspection of civil infrastructure, this work presents an efficient design and development of a tank-like robot for structural health monitoring. Unlike most existing magnetic wheeled mobile robot designs, which may be suitable for climbing on flat steel surface, our proposed tank-like robot design uses reciprocating mechanism and roller-chains to make it capable of climbing on different structural shapes (e.g., cylinder, cube) with coated or non-coated steel surfaces. The developed robot is able to pass through the joints and transition from one surface to the other (e.g., from flat to curving surfaces). Taking into account several strict considerations (including tight dimension, efficient adhesion and climbing flexibility) to adapt with various shapes of steel structures, a prototype tank-like robot integrating multiple sensors (hall-effects, sonars, inertial measurement unit, Eddy current and cameras), has been developed. Rigorous analysis of robot kinematics, adhesion force, sliding failure and turn-over failure has been conducted to demonstrate the stability of the proposed design. Mechanical and magnetic force analysis together with sliding/turn-over failure investigation can serve as an useful framework for designing various steel climbing robots in the future. The robot is integrated with cameras and Eddy current sensor for visual and in-depth fatigue crack inspection of steel structures. Experimental results and field deployments confirm the adhesion, climbing, inspection capability of the developed robot.  more » « less
Award ID(s):
1846513 1919127
NSF-PAR ID:
10164356
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
1912 to 1917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper introduces an innovative and streamlined design of a robot, resembling a bicycle, created to effectively inspect a wide range of ferromagnetic structures, even those with intricate shapes. The key highlight of this robot lies in its mechanical simplicity coupled with remarkable agility. The locomotion strategy hinges on the arrangement of two magnetic wheels in a configuration akin to a bicycle, augmented by two independent steering actuators. This configuration grants the robot the exceptional ability to move in multiple directions. Moreover, the robot employs a reciprocating mechanism that allows it to alter its shape, thereby surmounting obstacles effortlessly. An inherent trait of the robot is its innate adaptability to uneven and intricate surfaces on steel structures, facilitated by a dynamic joint. To underscore its practicality, the robot's application is demonstrated through the utilization of an ultrasonic sensor for gauging steel thickness, coupled with a pragmatic deployment mechanism. By integrating a defect detection model based on deep learning, the robot showcases its proficiency in automatically identifying and pinpointing areas of rust on steel surfaces. The paper undertakes a thorough analysis, encompassing robot kinematics, adhesive force, potential sliding and turn‐over scenarios, and motor power requirements. These analyses collectively validate the stability and robustness of the proposed design. Notably, the theoretical calculations established in this study serve as a valuable blueprint for developing future robots tailored for climbing steel structures. To enhance its inspection capabilities, the robot is equipped with a camera that employs deep learning algorithms to detect rust visually. The paper substantiates its claims with empirical evidence, sharing results from extensive experiments and real‐world deployments on diverse steel bridges, situated in both Nevada and Georgia. These tests comprehensively affirm the robot's proficiency in adhering to surfaces, navigating challenging terrains, and executing thorough inspections. A comprehensive visual representation of the robot's trials and field deployments is presented in videos accessible at the following links:https://youtu.be/Qdh1oz_oxiQ andhttps://youtu.be/vFFq79O49dM.

     
    more » « less
  2. The research of robots to assist people in inspecting the quality of steel bridges has attracted significant attention in recent years. However, the intricate structure of the steel bridge components poses a massive challenge for researchers to move the robot across the bridge to perform the tests. This paper presents a new development of a hybrid flying-climbing robotic system, which can move flexibly and quickly to different positions on the steel bridge. In addition to using high-resolution cameras for an overview, the design allows the robot to stick to steel surfaces and act as a mobile robot for more detailed inspection with our developed giant magneto-resistance (GMR) sensor array system. We conduct a mechanical analysis to show the climbing capability of the mobile part. Additionally, we develop a landing algorithm to allow the robot to land on a steel surface to perform in-depth inspection safely. The designed GMR sensor array has shown the capability of detecting steel cracks to support the in-depth inspection mode. We have tested and validated our developed robot on real bridges to ensure that the design works well and is stable. 
    more » « less
  3. The Advanced Robotics and Automation (ARA) Lab has engineered its next-generation robot for steel bridge inspection. This particular design is specialized for its particularly high strength adhesion force and high maneuverability. The robot can utilize various steering configurations such as Ackermann, synchronous and static point steering while navigating steel structures and adhering to cylindrical members. The adhesion system creates a comprehensive platform for adding extra sensing equipment by the user and will serve as a basis for future works. This paper will discuss in detail the design work done to ensure that the proposed robot would function as intended before we made it and show how the capabilities we engineered the proposed robot have made it a step forward for the steel inspection industry. 
    more » « less
  4. null (Ed.)
    Autonomous navigation of steel bridge inspection robots are essential for proper maintenance. Majority of existing robotic solutions for bridge inspection require human intervention to assist in the control and navigation. In this paper, a control system framework has been proposed for a previously designed ARA robot [1], which facilitates autonomous real-time navigation and minimizes human involvement. The mechanical design and control framework of ARA robot enables two different configurations, namely the mobile and inch-worm transformation. In addition, a switching control was developed with 3D point clouds of steel surfaces as the input which allows the robot to switch between mobile and inch-worm transformation. The surface availability algorithm (considers plane, area and height) of the switching control enables the robot to perform inch-worm jumps autonomously. The mobile transformation allows the robot to move on continuous steel surfaces and perform visual inspection of steel bridge structures. Practical experiments on actual steel bridge structures highlight the effective performance of ARA robot with the proposed control framework for autonomous navigation during visual inspection of steel bridges. 
    more » « less
  5. null (Ed.)
    This research presents an experimental program executed to understand the strength and stiffness properties of hollow built-up glass compression members that are intended for use in the modular construction of all glass, compression-dominant, shell-type structures. The proposed compression-dominant geometric form has been developed using the methods of form finding and three-dimensional graphical statics. This research takes the first steps towards a new construction methodology for glass structures where individual hollow glass units (HGU) are assembled using an interlocking system to form large, compression-dominant, shell-type structures, thereby exploiting the high compression strength of glass. In this study, an individual HGU has an elongated hexagonal prism shape and consists of two deck plates, two long side plates, and four short side plates, as is shown in Figure 1. Connections between glass plates are made using a two-sided transparent structural adhesive tape. The test matrix includes four HGUs, two each fabricated with 1 mm and 2 mm thick adhesive tape. All samples are dimensioned 64 cm on the long axis of symmetry, 51 cm on the short axis of symmetry, and are 10 cm in width. Glass plates are all 10 mm thick annealed float glass with geometric fabrication done using 5-axis abrasive water jet cutting. HGU assembly is accomplished using 3D printed truing clips and results in a rigid three-dimensional glass frame. Testing was done with the HGU oriented such that load was introduced on the short side edges of the two deck plates, resulting in an asymmetric load-support condition. A soft interface material was used between the HGU and steel plates of the hydraulic actuator and support for the purpose of avoiding premature cracking from local stress concentrations on the glass edges at the load and support locations. Force was applied in displacement control at 0.25 mm/minute with a full array of displacement and strain sensors. Test results for load vs. center deck plate transverse deflection are shown in Figure 2. All samples failed explosively by flexural buckling with no premature cracking on the load and support edges of the deck plates. Strain and deformation data clearly show the presence of second-order behavior resulting from bending deformation perpendicular to the plane of the deck plates. In general, linear axial behavior transitions to nonlinear second-order behavior, with increasing rates in deflection and strain growth, ultimately ending in glass fracture on the tension surfaces of the buckled deck plates. The failure resulted in near-complete disintegration of the deck plates, but with no observable cracking in any side plates and a secure connection on all adhesive tape. Results of the experimental program clearly demonstrate the feasibility of using HGUs for modular construction of compression dominant all-glass shell-type structures. This method of construction can significantly reduce the self-weight of the structure, and it will inspire the use of sustainable materials in the construction of efficient structures. 
    more » « less