ABSTRACT We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and $${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $$\mu$$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $$50{{\ \rm per\ cent}}$$ solar. To explain the measured dust-corrected luminosity ratios of $$\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$$ and $$\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$$ for our sample, ionization parameters log (U) < −2 and electron densities $$\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6. 
                        more » 
                        « less   
                    
                            
                            The ALPINE−ALMA [C ii] Survey: on the nature of an extremely obscured serendipitous galaxy
                        
                    
    
            ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $$z$$ ∼ 4.6 or high-J CO transitions at $$z$$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $$\mathrm{log}{(L_{[\mathrm{ C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $$z$$ = 4.6 (i.e. [C ii] emitter) with $$\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$$ and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $$z$$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1910107
- PAR ID:
- 10164479
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 496
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 875 to 887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Observations of local star-forming galaxies (SFGs) show a tight correlation between their singly ionized carbon line luminosity ($$L_{\rm [C\, \small {II}]}$$) and star formation rate (SFR), suggesting that $$L_{\rm [C\, \small {II}]}$$ may be a useful SFR tracer for galaxies. Some other galaxy populations, however, are found to have lower $$L_{\rm [C\, \small {II}]}{}/{}\rm SFR$$ than local SFGs, including the infrared-luminous, starburst galaxies at low and high redshifts as well as some moderately star-forming galaxies at the epoch of re-ionization (EoR). The origins of this ‘$$\rm [C\, \small {II}]$$ deficit’ is unclear. In this work, we study the $$L_{\rm [C\, \small {II}]}$$-SFR relation of galaxies using a sample of z = 0 − 8 galaxies with M* ≈ 107 − 5 × 1011 M⊙ extracted from cosmological volume and zoom-in simulations from the Feedback in Realistic Environments (fire) project. We find a simple analytic expression for $$L_{\rm [C\, \small {II}]}$$/SFR of galaxies in terms of the following parameters: mass fraction of $$\rm [C\, \small {II}]$$-emitting gas ($$f_{\rm [C\, \small {II}]}$$), gas metallicity (Zgas), gas density (ngas) and gas depletion time ($$t_{\rm dep}{}={}M_{\rm gas}{}/{}\rm SFR$$). We find two distinct physical regimes: $$\rm H_2$$-rich galaxies where tdep is the main driver of the $$\rm [C\, \small {II}]$$ deficit and $$\rm H_2$$-poor galaxies where Zgas is the main driver. The observed $$\rm [C\, \small {II}]$$ deficit of IR-luminous galaxies and early EoR galaxies, corresponding to the two different regimes, is due to short gas depletion time and low gas metallicity, respectively. Our result indicates that the $$\rm [C\, \small {II}]$$ deficit is a common phenomenon of galaxies, and caution needs to be taken when applying a constant $$L_{\rm [C\, \small {II}]}$$-to-SFR conversion factor derived from local SFGs to estimate cosmic SFR density at high redshifts and interpret data from upcoming $$\rm [C\, \small {II}]$$ line intensity mapping experiments.more » « less
- 
            The ALMA-ALPINE [CII] survey is aimed at characterizing the properties of a sample of normal star-forming galaxies (SFGs). The ALMA Large Program to INvestigate (ALPINE) features 118 galaxies observed in the [CII]-158 μ m line and far infrared (FIR) continuum emission during the period of rapid mass assembly, right after the end of the HI reionization, at redshifts of 4 < z < 6. We present the survey science goals, the observational strategy, and the sample selection of the 118 galaxies observed with ALMA, with an average beam minor axis of about 0.85″, or ∼5 kpc at the median redshift of the survey. The properties of the sample are described, including spectroscopic redshifts derived from the UV-rest frame, stellar masses, and star-formation rates obtained from a spectral energy distribution (SED) fitting. The observed properties derived from the ALMA data are presented and discussed in terms of the overall detection rate in [CII] and FIR continuum, with the observed signal-to-noise distribution. The sample is representative of the SFG population in the main sequence at these redshifts. The overall detection rate in [CII] is 64% for a signal-to-noise ratio (S/N) threshold larger than 3.5 corresponding to a 95% purity (40% detection rate for S / N > 5). Based on a visual inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types, including 40% that are mergers, 20% extended and dispersion-dominated, 13% compact, and 11% rotating discs, with the remaining 16% too faint to be classified. This diversity indicates that a wide array of physical processes must be at work at this epoch, first and foremost, those of galaxy mergers. This paper sets a reference sample for the gas distribution in normal SFGs at 4 < z < 6, a key epoch in galaxy assembly, which is ideally suited for studies with future facilities, such as the James Webb Space Telescope (JWST) and the Extremely Large Telescopes (ELTs).more » « less
- 
            ABSTRACT We report the detection of the far-infrared (FIR) fine-structure line of singly ionized nitrogen, [N ii] 205 $$\mu$$m , within the peak epoch of galaxy assembly, from a strongly lensed galaxy, hereafter ‘The Red Radio Ring’; the RRR, at z = 2.55. We combine new observations of the ground-state and mid-J transitions of CO (Jup = 1, 5, 8), and the FIR spectral energy distribution (SED), to explore the multiphase interstellar medium (ISM) properties of the RRR. All line profiles suggest that the H ii regions, traced by [N ii] 205 $$\mu$$m , and the (diffuse and dense) molecular gas, traced by CO, are cospatial when averaged over kpc-sized regions. Using its mid-IR-to-millimetre (mm) SED, we derive a non-negligible dust attenuation of the [N ii] 205 $$\mu$$m line emission. Assuming a uniform dust screen approximation results a mean molecular gas column density >1024 cm−2, with a molecular gas-to-dust mass ratio of 100. It is clear that dust attenuation corrections should be accounted for when studying FIR fine-structure lines in such systems. The attenuation corrected ratio of $$L_{\rm N\,{\small II}205} / L_{\rm IR(8\!-\!1000\, \mu m)} = 2.7 \times 10^{-4}$$ is consistent with the dispersion of local and z > 4 SFGs. We find that the lower limit, [N ii] 205 $$\mu$$m -based star formation rate (SFR) is less than the IR-derived SFR by a factor of 4. Finally, the dust SED, CO line SED, and $$L_{\rm N\,{\small II}205}$$ line-to-IR luminosity ratio of the RRR is consistent with a starburst-powered ISM.more » « less
- 
            ABSTRACT We present specific star formation rates (sSFRs) for 40 ultraviolet (UV)-bright galaxies at z ∼ 7–8 observed as part of the Reionization Era Bright Emission Line Survey (REBELS) Atacama Large Millimeter/submillimeter Array (ALMA) large programme. The sSFRs are derived using improved star formation rate (SFR) calibrations and spectral energy distribution (SED)-based stellar masses, made possible by measurements of far-infrared (FIR) continuum emission and [C ii]-based spectroscopic redshifts. The median sSFR of the sample is $$18_{-5}^{+7}$$ Gyr−1, significantly larger than literature measurements lacking constraints in the FIR, reflecting the larger obscured SFRs derived from the dust continuum relative to that implied by the UV+optical SED. We suggest that such differences may reflect spatial variations in dust across these luminous galaxies, with the component dominating the FIR distinct from that dominating the UV. We demonstrate that the inferred stellar masses (and hence sSFRs) are strongly dependent on the assumed star formation history in reionization-era galaxies. When large sSFR galaxies (a population that is common at z > 6) are modelled with non-parametric star formation histories, the derived stellar masses can increase by an order of magnitude relative to constant star formation models, owing to the presence of a significant old stellar population that is outshined by the recent burst. The [C ii] line widths in the largest sSFR systems are often very broad, suggesting dynamical masses capable of accommodating an old stellar population suggested by non-parametric models. Regardless of these systematic uncertainties among derived parameters, we find that sSFRs increase rapidly toward higher redshifts for massive galaxies (9.6 < log (M*/M⊙) < 9.8), evolving as (1 + z)1.7 ± 0.3, broadly consistent with expectations from the evolving baryon accretion rates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    