skip to main content

Title: The ASAS-SN catalogue of variable stars – IV. Periodic variables in the APOGEE survey
ABSTRACT We explore the synergy between photometric and spectroscopic surveys by searching for periodic variable stars among the targets observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) using photometry from the All-Sky Automated Survey for Supernovae (ASAS-SN). We identified 1924 periodic variables among more than $258\, 000$ APOGEE targets; 465 are new discoveries. We homogeneously classified 430 eclipsing and ellipsoidal binaries, 139 classical pulsators (Cepheids, RR Lyrae, and δ Scuti), 719 long-period variables (pulsating red giants), and 636 rotational variables. The search was performed using both visual inspection and machine learning techniques. The light curves were also modelled with the damped random walk stochastic process. We find that the median [Fe/H] of variable objects is lower by 0.3 dex than that of the overall APOGEE sample. Eclipsing binaries and ellipsoidal variables are shifted to a lower median [Fe/H] by 0.2 dex. Eclipsing binaries and rotational variables exhibit significantly broader spectral lines than the rest of the sample. We make ASAS-SN light curves for all the APOGEE stars publicly available and provide parameters for the variable objects.
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1814440 1908952 1908570 1515927
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
5932 to 5945
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the first results from Citizen ASAS-SN, a citizen science project for the All-Sky Automated Survey for Supernovae (ASAS-SN) hosted on the Zooniverse platform. Citizen ASAS-SN utilizes the newer, deeper, higher cadence ASAS-SN g -band data and tasks volunteers to classify periodic variable star candidates based on their phased light curves. We started from 40,640 new variable candidates from an input list of ∼7.4 million stars with δ < −60° and the volunteers identified 10,420 new discoveries which they classified as 4234 pulsating variables, 3132 rotational variables, 2923 eclipsing binaries, and 131 variables flagged as Unknown. They classifiedmore »known variable stars with an accuracy of 89% for pulsating variables, 81% for eclipsing binaries, and 49% for rotational variables. We examine user performance, agreement between users, and compare the citizen science classifications with our machine learning classifier updated for the g -band light curves. In general, user activity correlates with higher classification accuracy and higher user agreement. We used the user’s “Junk” classifications to develop an effective machine learning classifier to separate real from false variables, and there is a clear path for using this “Junk” training set to significantly improve our primary machine learning classifier. We also illustrate the value of Citizen ASAS-SN for identifying unusual variables with several examples.« less
  2. ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scalemore »height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.« less

    The All-Sky Automated Survey for Supernovae (ASAS-SN) provides long baseline (∼4 yr) light curves for sources brighter than V ≲ 17 mag across the whole sky. As part of our effort to characterize the variability of all the stellar sources visible in ASAS-SN, we have produced ∼30.1 million V-band light curves for sources in the Southern hemisphere using the APASS DR9 (AAVSO Photometric All-Sky Survey Data Release) catalogue as our input source list. We have systematically searched these sources for variability using a pipeline based on random forest classifiers. We have identified ${\sim } 220\, 000$ variables, including ${\sim }more »88\, 300$ new discoveries. In particular, we have discovered ${\sim }48\, 000$ red pulsating variables, ${\sim }23\, 000$ eclipsing binaries, ∼2200 δ-Scuti variables, and ${\sim }10\, 200$ rotational variables. The light curves and characteristics of the variables are all available through the ASAS-SN variable stars data base ( The pre-computed ASAS-SN V-band light curves for all the ∼30.1 million sources are available through the ASAS-SN photometry data base ( This effort will be extended to provide ASAS-SN light curves for sources in the Northern hemisphere and for V ≲ 17 mag sources across the whole sky that are not included in APASS DR9.

    « less
  4. null (Ed.)
    ABSTRACT The All-Sky Automated Survey for Supernovae provides long baseline (∼4 yr) V-band light curves for sources brighter than V≲ 17 mag across the whole sky. We produced V-band light curves for a total of ∼61.5 million sources and systematically searched these sources for variability. We identified ∼426 000 variables, including ∼219 000 new discoveries. Most (${\sim }74{ per\ cent}$) of our discoveries are in the Southern hemisphere. Here, we use spectroscopic information from LAMOST, GALAH, RAVE, and APOGEE to study the physical and chemical properties of these variables. We find that metal-poor eclipsing binaries have orbital periods that are shorter than metal-rich systemsmore »at fixed temperature. We identified rotational variables on the main-sequence, red giant branch, and the red clump. A substantial fraction (${\gtrsim }80{ per\ cent}$) of the rotating giants have large $v$rot or large near-ultraviolet excesses also indicative of fast rotation. The rotational variables have unusual abundances suggestive of analysis problems. Semiregular variables tend to be lower metallicity ($\rm [Fe/H]{\sim }-0.5$) than most giant stars. We find that the APOGEE DR16 temperatures of oxygen-rich semiregular variables are strongly correlated with the WRP − WJK colour index for $\rm T_{eff}\lesssim 3800$ K. Using abundance measurements from APOGEE DR16, we find evidence for Mg and N enrichment in the semiregular variables. We find that the Aluminum abundances of the semiregular variables are strongly correlated with the pulsation period, where the variables with $\rm P\gtrsim 60$ d are significantly depleted in Al.« less
  5. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert Systemmore »(ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.« less