Abstract The two properties of the radial mass distribution of a gravitational lens that are well constrained by Einstein rings are the Einstein radius RE and ξ2 = REα″(RE)/(1 − κE), where α″(RE) and κE are the second derivative of the deflection profile and the convergence at RE, respectively. However, if there is a tight mathematical relationship between the radial mass profile and the angular structure, as is true of ellipsoids, an Einstein ring can appear to strongly distinguish radial mass distributions with the same ξ2. This problem is beautifully illustrated by the ellipsoidal models in Millon et al. When using Einsteinmore »
Overconstrained gravitational lens models and the Hubble constant
ABSTRACT It is well known that measurements of H0 from gravitational lens time delays scale as H0 ∝ 1 − κE, where κE is the mean convergence at the Einstein radius RE but that all available lens data other than the delays provide no direct constraints on κE. The properties of the radial mass distribution constrained by lens data are RE and the dimensionless quantity ξ = REα″(RE)/(1 − κE), where α″(RE) is the second derivative of the deflection profile at RE. Lens models with too few degrees of freedom, like powerlaw models with densities ρ ∝ r−n, have a onetoone correspondence between ξ and κE (for a powerlaw model, ξ = 2(n − 2) and κE = (3 − n)/2 = (2 − ξ)/4). This means that highly constrained lens models with few parameters quickly lead to very precise but inaccurate estimates of κE and hence H0. Based on experiments with a broad range of plausible dark matter halo models, it is unlikely that any current estimates of H0 from gravitational lens time delays are more accurate than ${\sim} 10{{\ \rm per\ cent}}$, regardless of the reported precision.
 Award ID(s):
 1814440
 Publication Date:
 NSFPAR ID:
 10164492
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 493
 Issue:
 2
 Page Range or eLocationID:
 1725 to 1735
 ISSN:
 00358711
 Sponsoring Org:
 National Science Foundation
More Like this


The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H 0 = 73.3 −1.8 +1.7 km s −1 Mpc −1 , describing deflector mass density profiles by either a powerlaw or stars (constant masstolight ratio) plus standard dark matter halos. The masssheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H 0 . We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H 0 . Our calculation ismore »

ABSTRACT Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite highresolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptiveoptics (AO) imaging from groundbased telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three timedelay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP)more »

ABSTRACT Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce highorder perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H0 of a few per cent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI 2033−4723 ($z_{\rm src} =\,$1.662, $z_{\rm lens}=\,$0.6575), one of the core targets of the H0LiCOW project for which we present cosmological inferences inmore »

ABSTRACT In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to measure the Hubble constant H0. However, published stateoftheart analyses require of order 1 yr of expert investigator time and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate systematic uncertainties. With this time delay lens modelling challenge, we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysismore »