skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mining Approximate Acyclic Schemes from Relations
Acyclic schemes have numerous applications in databases and in machine learning, such as improved design, more efficient storage, and increased performance for queries and ma- chine learning algorithms. Multivalued dependencies (MVDs) are the building blocks of acyclic schemes. The discovery from data of both MVDs and acyclic schemes is more challenging than other forms of data dependencies, such as Functional Dependencies, because these dependencies do not hold on subsets of data, and because they are very sensitive to noise in the data; for example a single wrong or missing tuple may invalidate the schema. In this paper we present Maimon, a system for discovering approximate acyclic schemes and MVDs from data. We give a principled definition of approximation, by using notions from information theory, then describe the two components of Maimon: mining for approximate MVDs, then reconstructing acyclic schemes from approximate MVDs. We conduct an experimental evaluation of Maimon on 20 real-world datasets, and show that it can scale up to 1M rows, and up to 30 columns.  more » « less
Award ID(s):
1907997
PAR ID:
10164548
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SIGMOD
Page Range / eLocation ID:
297 to 312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Matrix multiplication is a fundamental building block for large scale computations arising in various applications, including machine learning. There has been significant recent interest in using coding to speed up distributed matrix multiplication, that are robust to stragglers (i.e., machines that may perform slower computations). In many scenarios, instead of exact computation, approximate matrix multiplication, i.e., allowing for a tolerable error is also sufficient. Such approximate schemes make use of randomization techniques to speed up the computation process. In this paper, we initiate the study of approximate coded matrix multiplication, and investigate the joint synergies offered by randomization and coding. Specifically, we propose two coded randomized sampling schemes that use (a) codes to achieve a desired recovery threshold and (b) random sampling to obtain approximation of the matrix multiplication. Tradeoffs between the recovery threshold and approximation error obtained through random sampling are investigated for a class of coded matrix multiplication schemes. 
    more » « less
  2. null (Ed.)
    Existing single-stream logging schemes are unsuitable for in-memory database management systems (DBMSs) as the single log is often a performance bottleneck. To overcome this problem, we present Taurus, an efficient parallel logging scheme that uses multiple log streams, and is compatible with both data and command logging. Taurus tracks and encodes transaction dependencies using a vector of log sequence numbers (LSNs). These vectors ensure that the dependencies are fully captured in logging and correctly enforced in recovery. Our experimental evaluation with an in-memory DBMS shows that Taurus's parallel logging achieves up to 9.9X and 2.9X speedups over single-streamed data logging and command logging, respectively. It also enables the DBMS to recover up to 22.9X and 75.6X faster than these baselines for data and command logging, respectively. We also compare Taurus with two state-of-the-art parallel logging schemes and show that the DBMS achieves up to 2.8X better performance on NVMe drives and 9.2X on HDDs. 
    more » « less
  3. Brute force cross-validation (CV) is a method for predictive assessment and model selection that is general and applicable to a wide range of Bayesian models. Naive or ‘brute force’ CV approaches are often too computationally costly for interactive modeling workflows, especially when inference relies on Markov chain Monte Carlo (MCMC). We propose overcoming this limitation using massively parallel MCMC. Using accelerator hardware such as graphics processor units, our approach can be about as fast (in wall clock time) as a single full-data model fit. Parallel CV is flexible because it can easily exploit a wide range data partitioning schemes, such as those designed for non-exchangeable data. It can also accommodate a range of scoring rules. We propose MCMC diagnostics, including a summary of MCMC mixing based on the popular potential scale reduction factor (R-hat) and MCMC effective sample size (ESS) measures. We also describe a method for determining whether an R-hat diagnostic indicates approximate stationarity of the chains, that may be of more general interest for applications beyond parallel CV. Finally, we show that parallel CV and its diagnostics can be implemented with online algorithms, allowing parallel CV to scale up to very large blocking designs on memory-constrained computing accelerators. 
    more » « less
  4. This paper investigates the problem of selecting instrumental variables relative to a target causal influence X→Y from observational data generated by linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. We propose a necessary condition for detecting variables that cannot serve as instrumental variables. Unlike many existing conditions for continuous variables, i.e., that at least two or more valid instrumental variables are present in the system, our condition is designed with a single instrumental variable. We then characterize the graphical implications of our condition in linear non-Gaussian acyclic causal models. Given that the existing graphical criteria for the instrument validity are not directly testable given observational data, we further show whether and how such graphical criteria can be checked by exploiting our condition. Finally, we develop a method to select the set of candidate instrumental variables given observational data. Experimental results on both synthetic and real-world data show the effectiveness of the proposed method. 
    more » « less
  5. null (Ed.)
    Abstract Directed acyclic graphical models are widely used to represent complex causal systems. Since the basic task of learning such a model from data is NP-hard, a standard approach is greedy search over the space of directed acyclic graphs or Markov equivalence classes of directed acyclic graphs. As the space of directed acyclic graphs on p nodes and the associated space of Markov equivalence classes are both much larger than the space of permutations, it is desirable to consider permutation-based greedy searches. Here, we provide the first consistency guarantees, both uniform and high-dimensional, of a greedy permutation-based search. This search corresponds to a simplex-like algorithm operating over the edge-graph of a subpolytope of the permutohedron, called a directed acyclic graph associahedron. Every vertex in this polytope is associated with a directed acyclic graph, and hence with a collection of permutations that are consistent with the directed acyclic graph ordering. A walk is performed on the edges of the polytope maximizing the sparsity of the associated directed acyclic graphs. We show via simulated and real data that this permutation search is competitive with current approaches. 
    more » « less