skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancement of Neurocognitive Assessments Using Smartphone Capabilities: Systematic Review
Background Comprehensive exams such as the Dean-Woodcock Neuropsychological Assessment System, the Global Deterioration Scale, and the Boston Diagnostic Aphasia Examination are the gold standard for doctors and clinicians in the preliminary assessment and monitoring of neurocognitive function in conditions such as neurodegenerative diseases and acquired brain injuries (ABIs). In recent years, there has been an increased focus on implementing these exams on mobile devices to benefit from their configurable built-in sensors, in addition to scoring, interpretation, and storage capabilities. As smartphones become more accepted in health care among both users and clinicians, the ability to use device information (eg, device position, screen interactions, and app usage) for subject monitoring also increases. Sensor-based assessments (eg, functional gait using a mobile device’s accelerometer and/or gyroscope or collection of speech samples using recordings from the device’s microphone) include the potential for enhanced information for diagnoses of neurological conditions; mapping the development of these conditions over time; and monitoring efficient, evidence-based rehabilitation programs. Objective This paper provides an overview of neurocognitive conditions and relevant functions of interest, analysis of recent results using smartphone and/or tablet built-in sensor information for the assessment of these different neurocognitive conditions, and how human-device interactions and the assessment and monitoring of these neurocognitive functions can be enhanced for both the patient and health care provider. Methods This survey presents a review of current mobile technological capabilities to enhance the assessment of various neurocognitive conditions, including both neurodegenerative diseases and ABIs. It explores how device features can be configured for assessments as well as the enhanced capability and data monitoring that will arise due to the addition of these features. It also recognizes the challenges that will be apparent with the transfer of these current assessments to mobile devices. Results Built-in sensor information on mobile devices is found to provide information that can enhance neurocognitive assessment and monitoring across all functional categories. Configurations of positional sensors (eg, accelerometer, gyroscope, and GPS), media sensors (eg, microphone and camera), inherent sensors (eg, device timer), and participatory user-device interactions (eg, screen interactions, metadata input, app usage, and device lock and unlock) are all helpful for assessing these functions for the purposes of training, monitoring, diagnosis, or rehabilitation. Conclusions This survey discusses some of the many opportunities and challenges of implementing configured built-in sensors on mobile devices to enhance assessments and monitoring of neurocognitive functions as well as disease progression across neurodegenerative and acquired neurological conditions.  more » « less
Award ID(s):
1908991
PAR ID:
10164551
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
JMIR mHealth and uHealth
Volume:
8
Issue:
6
ISSN:
2291-5222
Page Range / eLocation ID:
e15517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mobile devices are becoming more pervasive in the monitoring of individuals’ health as device functionalities increase as does overall device prevalence in daily life. Therefore, it is necessary that these devices and their interactions are usable by individuals with diverse abilities and conditions. This paper assesses the usability of a neurocognitive assessment application by individuals with Parkinson’s Disease (PD) and proposes a design that focuses on the user interface, specifically on testing instructions, layouts, and subsequent user interactions. Further, we investigate potential benefits of cognitive interference (e.g., the addition of outside stimuli that intrude on task-related activity) on a user’s task performance. Understanding the population’s usability requirements and their performance on configured tasks allows for the formation of usable and objective neurocognitive assessments. 
    more » « less
  2. null (Ed.)
    Digital health technology is becoming more ubiquitous in monitoring individuals’ health as both device functionality and overall prevalence increase. However, as individuals age, challenges arise with using this technology particularly when it involves neurodegenerative issues (e.g., for individuals with Parkinson’s disease, Alzheimer’s disease, and ALS). Traditionally, neurodegenerative diseases have been assessed in clinical settings using pen-and-paper style assessments; however, digital health systems allow for the collection of far more data than we ever could achieve using traditional methods. The objective of this work is the formation and implementation of a neurocognitive digital health system designed to go beyond what pen-and-paper based solutions can do through the collection of (a) objective, (b) longitudinal, and (c) symptom-specific data, for use in (d) personalized intervention protocols. This system supports the monitoring of all neurocognitive functions (e.g., motor, memory, speech, executive function, sensory, language, behavioral and psychological function, sleep, and autonomic function), while also providing methodologies for personalized intervention protocols. The use of specifically designed tablet-based assessments and wearable devices allows for the collection of objective digital biomarkers that aid in accurate diagnosis and longitudinal monitoring, while patient reported outcomes (e.g., by the diagnosed individual and caregivers) give additional insights for use in the formation of personalized interventions. As many interventions are a one-size-fits-all concept, digital health systems should be used to provide a far more comprehensive understanding of neurodegenerative conditions, to objectively evaluate patients, and form personalized intervention protocols to create a higher quality of life for individuals diagnosed with neurodegenerative diseases. 
    more » « less
  3. Wearable internet of things (IoT) devices are becoming popular due to their small form factor and low cost. Potential applications include human health and activity monitoring by embedding sensors such as accelerometer, gyroscope, and heart rate sensor. However, these devices have severely limited battery capacity, which requires frequent recharging. Harvesting ambient energy and optimal energy allocation can make wearable IoT devices practical by eliminating the charging requirement. This paper presents a near-optimal runtime energy management technique by considering the harvested energy. The proposed solution maximizes the performance of the wearable device under minimum energy constraints. We show that the results of the proposed algorithm are, on average, within 3% of the optimal solution computed offline. 
    more » « less
  4. The use of mobile devices, especially smartphones, has become popular in recent years. There is an increasing need for cross-device interaction techniques that seamlessly integrate mobile devices and large display devices together. This paper develops a novel cross-device cursor position system that maps a mobile device’s movement on a flat surface to a cursor’s movement on a large display. The system allows a user to directly manipulate objects on a large display device through a mobile device and supports seamless cross-device data sharing without physical distance restrictions. To achieve this, we utilize sound localization to initialize the mobile device position as the starting location of a cursor on the large screen. Then, the mobile device’s movement is detected through an accelerometer and is accordingly translated to the cursor’s movement on the large display using machine learning models. In total, 63 features and 10 classifiers were employed to construct the machine learning models for movement detection. The evaluation results have demonstrated that three classifiers, in particular, gradient boosting, linear discriminant analysis (LDA), and naïve Bayes, are suitable for detecting the movement of a mobile device. 
    more » « less
  5. In an indoor space, determining a person’s speed of mobility has a lot of research significance and applicability in real-world scenarios. This research has developed a mobile application to investigate how to determine a person’s walking speed. The goal was to determine a person’s walking speed by using the number of steps. There has been similar work to test the accelerometer sensor in detecting steps. However, the accuracy of using the steps to calculate the velocity was not studied. This application uses the accelerometer sensor in the mobile device to detect steps and then compute the velocity. The accelerometer provides information about the user’s motion and acceleration, and an algorithm was developed to use that data to determine the steps. Once steps are determined, the person’s speed is calculated by using the change of location within a pre-determined space and time. Therefore, accurately measuring the number of steps was vital and it was determined that the position of the mobile device in the body plays a significant role in that accuracy. Therefore, the experiment used three device positions: the pants front pocket, the right hand, and the backpack. While walking, the number of steps were manually counted and recorded. A comparison was made between the recorded number of steps to the application’s measured steps. The experiment was conducted multiple times for each device position. The placement of the mobile devices in the front pants pocket gives the most accurate results, whereas the other two device positions gave reasonably accurate results. The position of the device played an important part in the research and had a significant impact on the accuracy of the results. In the future, testing can include additional device positions. Additionally, other mobile device sensors could be included in the testing and can be compared with this approach. 
    more » « less