skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design of a Neurocognitive Digital Health System (NDHS) for Neurodegenerative Diseases
Digital health technology is becoming more ubiquitous in monitoring individuals’ health as both device functionality and overall prevalence increase. However, as individuals age, challenges arise with using this technology particularly when it involves neurodegenerative issues (e.g., for individuals with Parkinson’s disease, Alzheimer’s disease, and ALS). Traditionally, neurodegenerative diseases have been assessed in clinical settings using pen-and-paper style assessments; however, digital health systems allow for the collection of far more data than we ever could achieve using traditional methods. The objective of this work is the formation and implementation of a neurocognitive digital health system designed to go beyond what pen-and-paper based solutions can do through the collection of (a) objective, (b) longitudinal, and (c) symptom-specific data, for use in (d) personalized intervention protocols. This system supports the monitoring of all neurocognitive functions (e.g., motor, memory, speech, executive function, sensory, language, behavioral and psychological function, sleep, and autonomic function), while also providing methodologies for personalized intervention protocols. The use of specifically designed tablet-based assessments and wearable devices allows for the collection of objective digital biomarkers that aid in accurate diagnosis and longitudinal monitoring, while patient reported outcomes (e.g., by the diagnosed individual and caregivers) give additional insights for use in the formation of personalized interventions. As many interventions are a one-size-fits-all concept, digital health systems should be used to provide a far more comprehensive understanding of neurodegenerative conditions, to objectively evaluate patients, and form personalized intervention protocols to create a higher quality of life for individuals diagnosed with neurodegenerative diseases.  more » « less
Award ID(s):
1908991
PAR ID:
10269846
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Workshop on Future of Digital Biomarkers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Comprehensive exams such as the Dean-Woodcock Neuropsychological Assessment System, the Global Deterioration Scale, and the Boston Diagnostic Aphasia Examination are the gold standard for doctors and clinicians in the preliminary assessment and monitoring of neurocognitive function in conditions such as neurodegenerative diseases and acquired brain injuries (ABIs). In recent years, there has been an increased focus on implementing these exams on mobile devices to benefit from their configurable built-in sensors, in addition to scoring, interpretation, and storage capabilities. As smartphones become more accepted in health care among both users and clinicians, the ability to use device information (eg, device position, screen interactions, and app usage) for subject monitoring also increases. Sensor-based assessments (eg, functional gait using a mobile device’s accelerometer and/or gyroscope or collection of speech samples using recordings from the device’s microphone) include the potential for enhanced information for diagnoses of neurological conditions; mapping the development of these conditions over time; and monitoring efficient, evidence-based rehabilitation programs. Objective This paper provides an overview of neurocognitive conditions and relevant functions of interest, analysis of recent results using smartphone and/or tablet built-in sensor information for the assessment of these different neurocognitive conditions, and how human-device interactions and the assessment and monitoring of these neurocognitive functions can be enhanced for both the patient and health care provider. Methods This survey presents a review of current mobile technological capabilities to enhance the assessment of various neurocognitive conditions, including both neurodegenerative diseases and ABIs. It explores how device features can be configured for assessments as well as the enhanced capability and data monitoring that will arise due to the addition of these features. It also recognizes the challenges that will be apparent with the transfer of these current assessments to mobile devices. Results Built-in sensor information on mobile devices is found to provide information that can enhance neurocognitive assessment and monitoring across all functional categories. Configurations of positional sensors (eg, accelerometer, gyroscope, and GPS), media sensors (eg, microphone and camera), inherent sensors (eg, device timer), and participatory user-device interactions (eg, screen interactions, metadata input, app usage, and device lock and unlock) are all helpful for assessing these functions for the purposes of training, monitoring, diagnosis, or rehabilitation. Conclusions This survey discusses some of the many opportunities and challenges of implementing configured built-in sensors on mobile devices to enhance assessments and monitoring of neurocognitive functions as well as disease progression across neurodegenerative and acquired neurological conditions. 
    more » « less
  2. null (Ed.)
    Mobile devices are becoming more pervasive in the monitoring of individuals’ health as device functionalities increase as does overall device prevalence in daily life. Therefore, it is necessary that these devices and their interactions are usable by individuals with diverse abilities and conditions. This paper assesses the usability of a neurocognitive assessment application by individuals with Parkinson’s Disease (PD) and proposes a design that focuses on the user interface, specifically on testing instructions, layouts, and subsequent user interactions. Further, we investigate potential benefits of cognitive interference (e.g., the addition of outside stimuli that intrude on task-related activity) on a user’s task performance. Understanding the population’s usability requirements and their performance on configured tasks allows for the formation of usable and objective neurocognitive assessments. 
    more » « less
  3. null (Ed.)
    Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients’ quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases. 
    more » « less
  4. Background In the last decade, there has been a rapid increase in research on the use of artificial intelligence (AI) to improve child and youth participation in daily life activities, which is a key rehabilitation outcome. However, existing reviews place variable focus on participation, are narrow in scope, and are restricted to select diagnoses, hindering interpretability regarding the existing scope of AI applications that target the participation of children and youth in a pediatric rehabilitation setting. Objective The aim of this scoping review is to examine how AI is integrated into pediatric rehabilitation interventions targeting the participation of children and youth with disabilities or other diagnosed health conditions in valued activities. Methods We conducted a comprehensive literature search using established Applied Health Sciences and Computer Science databases. Two independent researchers screened and selected the studies based on a systematic procedure. Inclusion criteria were as follows: participation was an explicit study aim or outcome or the targeted focus of the AI application; AI was applied as part of the provided and tested intervention; children or youth with a disability or other diagnosed health conditions were the focus of either the study or AI application or both; and the study was published in English. Data were mapped according to the types of AI, the mode of delivery, the type of personalization, and whether the intervention addressed individual goal-setting. Results The literature search identified 3029 documents, of which 94 met the inclusion criteria. Most of the included studies used multiple applications of AI with the highest prevalence of robotics (72/94, 77%) and human-machine interaction (51/94, 54%). Regarding mode of delivery, most of the included studies described an intervention delivered in-person (84/94, 89%), and only 11% (10/94) were delivered remotely. Most interventions were tailored to groups of individuals (93/94, 99%). Only 1% (1/94) of interventions was tailored to patients’ individually reported participation needs, and only one intervention (1/94, 1%) described individual goal-setting as part of their therapy process or intervention planning. Conclusions There is an increasing amount of research on interventions using AI to target the participation of children and youth with disabilities or other diagnosed health conditions, supporting the potential of using AI in pediatric rehabilitation. On the basis of our results, 3 major gaps for further research and development were identified: a lack of remotely delivered participation-focused interventions using AI; a lack of individual goal-setting integrated in interventions; and a lack of interventions tailored to individually reported participation needs of children, youth, or families. 
    more » « less
  5. First- and second-hand exposure to smoke or air pollutants is the primary cause of chronic obstructive pulmonary disease (COPD) pathogenesis, where genetic and age-related factors predispose the subject to the initiation and progression of obstructive lung disease. Briefly, airway inflammation, specifically bronchitis, initiates the lung disease, leading to difficulty in breathing (dyspnea) and coughing as initial symptoms, followed by air trapping and inhibition of the flow of air into the lungs due to damage to the alveoli (emphysema). In addition, mucus obstruction and impaired lung clearance mechanisms lead to recurring acute exacerbations causing progressive decline in lung function, eventually requiring lung transplant and other lifesaving interventions to prevent mortality. It is noteworthy that COPD is much more common in the population than currently diagnosed, as only 16 million adult Americans were reported to be diagnosed with COPD as of 2018, although an additional 14 million American adults were estimated to be suffering from COPD but undiagnosed by the current standard of care (SOC) diagnostic, namely the spirometry-based pulmonary function test (PFT). Thus, the main issue driving the adverse disease outcome and significant mortality for COPD is lack of timely diagnosis in the early stages of the disease. The current treatment regime for COPD emphysema is most effective when implemented early, on COPD onset, where alleviating symptoms and exacerbations with timely intervention(s) can prevent steep lung function decline(s) and disease progression to severe emphysema. Therefore, the key to efficiently combatting COPD relies on early detection. Thus, it is important to detect early regional pulmonary function and structural changes to monitor modest disease progression for implementing timely interventions and effectively eliminating emphysema progression. Currently, COPD diagnosis involves using techniques such as COPD screening questionnaires, PFT, arterial blood gas analysis, and/or lung imaging, but these modalities are limited in their capability for early diagnosis and real-time disease monitoring of regional lung function changes. Hence, promising emerging techniques, such as X-ray phase contrast, photoacoustic tomography, ultrasound computed tomography, electrical impedance tomography, the forced oscillation technique, and the impulse oscillometry system powered by robust artificial intelligence and machine learning analysis capability are emerging as novel solutions for early detection and real time monitoring of COPD progression for timely intervention. We discuss here the scope, risks, and limitations of current SOC and emerging COPD diagnostics, with perspective on novel diagnostics providing real time regional lung function monitoring, and predicting exacerbation and/or disease onset for prognosis-based timely intervention(s) to limit COPD–emphysema progression. 
    more » « less