skip to main content


Title: Sensing the walking velocity of a person by using mobile devices
In an indoor space, determining a person’s speed of mobility has a lot of research significance and applicability in real-world scenarios. This research has developed a mobile application to investigate how to determine a person’s walking speed. The goal was to determine a person’s walking speed by using the number of steps. There has been similar work to test the accelerometer sensor in detecting steps. However, the accuracy of using the steps to calculate the velocity was not studied. This application uses the accelerometer sensor in the mobile device to detect steps and then compute the velocity. The accelerometer provides information about the user’s motion and acceleration, and an algorithm was developed to use that data to determine the steps. Once steps are determined, the person’s speed is calculated by using the change of location within a pre-determined space and time. Therefore, accurately measuring the number of steps was vital and it was determined that the position of the mobile device in the body plays a significant role in that accuracy. Therefore, the experiment used three device positions: the pants front pocket, the right hand, and the backpack. While walking, the number of steps were manually counted and recorded. A comparison was made between the recorded number of steps to the application’s measured steps. The experiment was conducted multiple times for each device position. The placement of the mobile devices in the front pants pocket gives the most accurate results, whereas the other two device positions gave reasonably accurate results. The position of the device played an important part in the research and had a significant impact on the accuracy of the results. In the future, testing can include additional device positions. Additionally, other mobile device sensors could be included in the testing and can be compared with this approach.  more » « less
Award ID(s):
2131100
NSF-PAR ID:
10354397
Author(s) / Creator(s):
Date Published:
Journal Name:
The Twenty-Sixth ACM Annual Consortium for Computing Sciences in Colleges Northeastern Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Falls are the second leading cause of accidental or unintentional injuries/deaths worldwide. Accurate pose estimation using commodity mobile devices will help early detection and injury assessment of falls, which are essential for the first aid of elderly falls. By following the definition of fall, we propose a P ervasive P ose Est imation scheme for fall detection ( P \( ^2 \) Est ), which measures changes in tilt angle and height of the human body. For the tilt measurement, P \( ^2 \) Est leverages the pointing of the mobile device, e.g., the smartphone, when unlocking to associate the Device coordinate system with the World coordinate system. For the height measurement, P \( ^2 \) Est exploits the fact that the person’s height remains unchanged while walking to calibrate the pressure difference between the device and the floor. We have prototyped and tested P \( ^2 \) Est in various situations and environments. Our extensive experimental results have demonstrated that P \( ^2 \) Est can track the body orientation irrespective of which pocket the phone is placed in. More importantly, it enables the phone’s barometer to detect falls in various environments with decimeter-level accuracy. 
    more » « less
  2. To create safer and less congested traffic operating environments researchers at the University of Tennessee at Chattanooga (UTC) and the Georgia Tech Research Institute (GTRI) have fostered a vision of cooperative sensing and cooperative mobility. This vision is realized in a mobile application that combines visual data extracted from cameras on roadway infrastructure with a user’s coordinates via a GPS-enabled device to create a visual representation of the driving or walking environment surrounding the application user. By merging the concepts of computer vision, object detection, and mono-vision image depth calculation, this application is able to gather absolute Global Positioning System (GPS) coordinates from a user’s mobile device and combine them with relative GPS coordinates determined by the infrastructure cameras and determine the position of vehicles and pedestrians without the knowledge of their absolute GPS coordinates. The joined data is then used by an iOS mobile application to display a map showing the location of other entities such as vehicles, pedestrians, and obstacles creating a real-time visual representation of the surrounding area prior to the area appearing in the user’s visual perspective. Furthermore, a feature was implemented to display routing by using the results of a traffic scenario that was analyzed by rerouting algorithms in a simulated environment. By displaying where proximal entities are concentrated and showing recommended optional routes, users have the ability to be more informed and aware when making traffic decisions helping ensure a higher level of overall safety on our roadways. This vision would not be possible without high speed gigabit network infrastructure installed in Chattanooga, Tennessee and UTC’s wireless testbed, which was used to test many functions of this application. This network was required to reduce the latency of the massive amount of data generated by the infrastructure and vehicles that utilize the testbed; having results from this data come back in real-time is a critical component. 
    more » « less
  3. Abstract STUDY QUESTION To what extent is exposure to cellular telephones associated with male fertility? SUMMARY ANSWER Overall, we found little association between carrying a cell phone in the front pants pocket and male fertility, although among leaner men (BMI <25 kg/m2), carrying a cell phone in the front pants pocket was associated with lower fecundability. WHAT IS KNOWN ALREADY Some studies have indicated that cell phone use is associated with poor semen quality, but the results are conflicting. STUDY DESIGN, SIZE, DURATION Two prospective preconception cohort studies were conducted with men in Denmark (n = 751) and in North America (n = 2349), enrolled and followed via the internet from 2012 to 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS On the baseline questionnaire, males reported their hours/day of carrying a cell phone in different body locations. We ascertained time to pregnancy via bi-monthly follow-up questionnaires completed by the female partner for up to 12 months or until reported conception. We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% confidence intervals (CIs) for the association between male cell phone habits and fecundability, focusing on front pants pocket exposure, within each cohort separately and pooling across the cohorts using a fixed-effect meta-analysis. In a subset of participants, we examined selected semen parameters (semen volume, sperm concentration and sperm motility) using a home-based semen testing kit. MAIN RESULTS AND THE ROLE OF CHANCE There was little overall association between carrying a cell phone in a front pants pocket and fecundability: the FR for any front pants pocket exposure versus none was 0.94 (95% CI: 0.0.83–1.05). We observed an inverse association between any front pants pocket exposure and fecundability among men whose BMI was <25 kg/m2 (FR = 0.72, 95% CI: 0.59–0.88) but little association among men whose BMI was ≥25 kg/m2 (FR = 1.05, 95% CI: 0.90–1.22). There were few consistent associations between cell phone exposure and semen volume, sperm concentration, or sperm motility. LIMITATIONS, REASONS FOR CAUTION Exposure to radiofrequency radiation from cell phones is subject to considerable non-differential misclassification, which would tend to attenuate the estimates for dichotomous comparisons and extreme exposure categories (e.g. exposure 8 vs. 0 h/day). Residual confounding by occupation or other unknown or poorly measured factors may also have affected the results. WIDER IMPLICATIONS OF THE FINDINGS Overall, there was little association between carrying one’s phone in the front pants pocket and fecundability. There was a moderate inverse association between front pants pocket cell phone exposure and fecundability among men with BMI <25 kg/m2, but not among men with BMI ≥25 kg/m2. Although several previous studies have indicated associations between cell phone exposure and lower sperm motility, we found few consistent associations with any semen quality parameters. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the National Institutes of Health, grant number R03HD090315. In the last 3 years, PRESTO has received in-kind donations from Sandstone Diagnostics (for semen kits), Swiss Precision Diagnostics (home pregnancy tests), Kindara.com (fertility app), and FertilityFriend.com (fertility app). Dr. L.A.W. is a fibroid consultant for AbbVie, Inc. Dr. H.T.S. reports that the Department of Clinical Epidemiology is involved in studies with funding from various companies as research grants to and administered by Aarhus University. None of these studies are related to the current study. Dr. M.L.E. is an advisor to Sandstone Diagnostics, Ro, Dadi, Hannah, and Underdog. Dr. G.J.S. holds ownership in Sandstone Diagnostics Inc., developers of the Trak Male Fertility Testing System. In addition, Dr. G.J.S. has a patent pending related to Trak Male Fertility Testing System issued. TRIAL REGISTRATION NUMBER N/A 
    more » « less
  4. Abstract

    The aquatic eddy covariance technique is increasingly used to determine oxygen (O2) fluxes over benthic ecosystems. The technique uses O2measuring systems that have a high temporal and numerical resolution. In this study, we performed a series of lab and field tests to assess a new optical submersible O2meter designed for aquatic eddy covariance measurements and equipped with an existing ultra‐high speed optical fiber sensor. The meter has a 16‐bit digital‐to‐analog‐signal conversion that produces a 0–5 V output at a rate up to 40 Hz. The device was paired with an acoustic Doppler velocimeter. The combined meter and fiber‐optic O2sensor's response time was significantly faster in O2‐undersaturated water compared to in O2‐supersaturated water (0.087 vs. 0.12 s), but still sufficiently fast for aquatic eddy covariance measurements. The O2optode signal was not sensitive to variations in water flow or light exposure. However, the response time was affected by the direction of the flow. When the sensor tip was exposed to a flow from the back rather than the front, the response time increased by 37%. The meter's internal signal processing time was determined to be ~ 0.05 s, a delay that can be corrected for during postprocessing. In order for the built‐in temperature correction to be accurate, the meter should always be submerged with the fiber‐optic sensor. In multiple 21–47 h field tests, the system recorded consistently high‐quality, low‐noise O2flux data. Overall, the new meter is a powerful option for collecting robust aquatic eddy covariance data.

     
    more » « less
  5. null (Ed.)
    Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designs in addition to accurate measurements, obtained from 3D X-ray micro-computed tomography (μ-CT) imaging. The entire volume of the constructed geometries was subsequently meshed using a mixture of smooth and soft quadrilateral elements, with consideration of layers of inflation to obtain an accurate solution near the walls. A combined approach, based on the density-based and pressure-based Navier–Stokes formation, was adopted to obtain steady-state solutions and to bring the conservation imbalances below a specified linearization tolerance (i.e., 10−6). Turbulence was modeled using the realizable k-ε viscous model with scalable wall functions. A coupled two-phase flow model was, in addition, set up to track a large number of injected particles. The boundary conditions of the CFD model were defined based on experimental sensor data, recorded from the AJP control system. The accuracy of the model was validated using a factorial experiment, composed of AJ-deposition of a silver nanoparticle ink on a polyimide substrate. The outcomes of this study pave the way for the implementation of physics-driven in situ monitoring and control of AJP. 
    more » « less