Carbohydrate derived low molecular weight organogelators are interesting compounds with many potential applications. Selective functionalization of the different hydroxyl substituents on d -glucose and d -glucosamine resulted in small molecular gelators. Previously we have found that the C-2 acylated derivatives including esters and carbamates of 4,6- O -benzylidene protected glucose and glucosamine derivatives have shown remarkable applications as molecular gelators. In this research, in order to probe the structural influence of sugar derivatives on molecular self-assembly, we introduced acylation functional groups to the 3-hydroxyl group of 4,6- O -benzylidene acetal protected N -acetyl glucosamine derivatives. A library of fourteen ester derivatives was synthesized and characterized. The ester derivatives typically formed gels in pump oil and aqueous mixtures of dimethyl sulfoxide or ethanol. The resulting gels were characterized using optical microscopy, and rheology, etc. All alkyl ester derivatives were gelators for pump oil. A short chain ester derivative was able to form gels in a few different oils and the corresponding oil water mixtures phase selectively. The compound was also used to trap naproxen sodium and formed a stable co-gel. The controlled release of the drug from the gel to the aqueous phase was analyzed using UV-vis spectroscopy. These results show that the functionalization at the 3-OH position of the N -acetyl glucosamine derivative is a feasible strategy in designing new classes of organogelators.
more »
« less
Fast pyrolysis bio-oil from lignocellulosic biomass for the development of bio-based cyanate esters and cross-linked networks
Fast pyrolysis of pine wood was carried out to yield a liquid bio-oil mixture that was separated into organic and aqueous phases. The organic phase (ORG-bio-oil) was characterized by gas chromatography–mass spectroscopy, 31 P-nuclear magnetic resonance spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. It was further used as a raw material for producing a mixture of biphenolic compounds (ORG-biphenol). ORG-bio-oil, ORG-biphenol, and bisphenol-A were reacted with cyanogen bromide to yield cyanate ester monomers. Cyanate esters were characterized using FTIR spectroscopy and were thermally cross-linked to develop thermoset materials. Thermomechanical properties of cross-linked cyanate esters were assessed using dynamic mechanical analysis and compared with those of cross-linked bisphenol-A-based cyanate ester. ORG-biphenol cyanate ester was observed to have a superior glass transition temperature (350–380°C) as compared to bisphenol-A cyanate ester (190–220°C). Cyanate esters derived from bio-oil have the potential to be a sustainable alternative to the bisphenol-A-derived analog.
more »
« less
- Award ID(s):
- 1735971
- PAR ID:
- 10164837
- Date Published:
- Journal Name:
- High Performance Polymers
- Volume:
- 31
- Issue:
- 9-10
- ISSN:
- 0954-0083
- Page Range / eLocation ID:
- 1140 to 1152
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tae Hyun Kim (Ed.)The environmentally sustainable production of biodiesel is important for providing both a renewable alternative transportation fuel as well as a fuel for power generation using diesel engines. This research evaluates the use of inexpensive catalysts derived from waste materials for converting triglycerides in seed oils into biodiesel composed of fatty acid methyl esters. The performance of CaO catalysts derived from the shells of oysters, mussels, lobsters, and chicken eggs was investigated. The shell-derived powders were calcined with and without the addition of zinc nitrate at 700–1000 °C for 4 h to yield CaO whereas the CaO-ZnO mixed catalyst were prepared by wet impregnation followed by calcination at 700 °C. The catalysts were characterized by XRF, XRD, TGA, SEM, FTIR and GC-MS. The CaO-ZnO catalysts showed slightly better conversion efficiency compared to CaO catalysts for the transesterification of canola oil. The mixed CaO-ZnO catalysts derived mainly from oyster shells showed the highest catalytic activity with >90% biodiesel yield at a 9:1 methanol-to-oil mole ratio within 10 min of ultrasonication. The reduction of toxicant emission from the generator is 43% and 60% for SO2, 11% and 26% for CO, were observed for the biodiesel blending levels of B20 and B40, respectively.more » « less
-
null (Ed.)Fossil fuel refining produces over 70 Mt of excess sulfur annually from for which there is currently no practical use. Recently, methods to convert waste sulfur to recyclable and biodegradable polymers have been delineated. In this report, a commercial bisphenol A (BPA) derivative, 2,2′,5,5′-tetrabromo(bisphenol A) (Br4BPA), is explored as a potential organic monomer for copolymerization with elemental sulfur by RASP (radical-induced aryl halide-sulfur polymerization). Resultant copolymers, BASx (x = wt% sulfur in the monomer feed, screened for values of 80, 85, 90, and 95) were characterized by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Analysis of early stage reaction products and depolymerization products support proposed S–Caryl bond formation and regiochemistry, while fractionation of BASx reveals a sulfur rank of 3–6. Copolymers having less organic cross-linker (5 or 10 wt%) in the monomer feed were thermoplastics, whereas thermosets were accomplished when 15 or 20 wt% of organic cross-linker was used. The flexural strengths of the thermally processable samples (>3.4 MPa and >4.7 for BAS95 and BAS90, respectively) were quite high compared to those of familiar building materials such as portland cement (3.7 MPa). Furthermore, copolymer BAS90 proved quite resistant to degradation by oxidizing organic acid, maintaining its full flexural strength after soaking in 0.5 M H2SO4 for 24 h. BAS90 could also be remelted and recast into shapes over many cycles without any loss of mechanical strength. This study on the effect of monomer ratio on properties of materials prepared by RASP of small molecular aryl halides confirms that highly cross-linked materials with varying physical and mechanical properties can be accessed by this protocol. This work is also an important step towards potentially upcycling BPA from plastic degradation and sulfur from fossil fuel refining.more » « less
-
In this work, renewable composites were prepared by the association of a thermosetting resin synthesized via free-radical polymerization, using a mixture of tung oil, n-butyl methacrylate, and divinylbenzene, with silica-rich fillers, namely an algae biomass with high silica content, and a well-sorted sand. Furthermore, to investigate if the interaction between the non-polar resin and polar reinforcements could be improved, enhancing the materials’ mechanical properties, itaconic anhydride, a bio-derived molecule obtained from itaconic acid, was introduced to the resin composition. Thermogravimetric analysis (TGA) suggested that the thermal stability of the composites was overall not changed with the addition of itaconic anhydride. The mechanical properties of the sand composites, however, did improve, as the storage modulus at room temperature, measured by dynamic mechanical analysis (DMA), almost doubled in the presence of itaconic anhydride. The glass transition temperatures of the materials increased by approximately 30 °C when sand was used as a reinforcement. Water absorption experiments validated an increase in the polarity of the unreinforced resin by the addition of itaconic anhydride to its formulation. The composites, however, did not exhibit a significant difference in polarity in the presence of itaconic anhydride. Finally, scanning electron microscopy (SEM), equipped with energy dispersive spectroscopy (EDS), demonstrated better matrix–filler adhesion in the presence of itaconic anhydride for high-silica algae composites.more » « less
-
Abstract A systematic study of the behavior of different leaving groups on a variety of ester‐based monomers was performed for the chain‐growth polycondensation synthesis of poly(N‐octyl benzamide). Linear and branched alkane esters were compared with their phenyl analogs using both computational and experimental methods. Kinetic experiments along with qualitative solubility observations were used, with the aid of nuclear magnetic resonance spectroscopy and gel‐permeation chromatography, to determine progress of the reaction, molecular weights, and molecular weight distributions. It was found that the reactivity of the monomer's ester group depends more on the stability of the leaving alkoxide than the electrophilicity of the carbonyl carbon, which contradicts previous literature. The order of reactivity increases for the alkyl esters with decreasing steric hindrance and decreasing pKa of the substituent. For the phenyl ester derivatives, the more electron withdrawing character of a para substituent increases the reactivity of the ester group, due to the higher resonance stabilization of the leaving phenoxide anion, not due to an increase in the electrophilicity of the carbonyl carbon.more » « less
An official website of the United States government

