skip to main content


Title: Improved Table Retrieval Using Multiple Context Embeddings for Attributes
Table retrieval is the task of extracting the most relevant tables to answer a user's query. Table retrieval is an important task because many domains have tables that contain useful information in a structured form. Given a user's query, the goal is to obtain a relevance ranking for query-table pairs, such that higher ranked tables should be more relevant to the query. In this paper, we present a context-aware table retrieval method that is based on a novel embedding for attribute tokens. We find that differentiated types of contexts are useful in building word embeddings. We also find that including a specialized representation of numerical cell values in our model improves table retrieval performance. We use the trained model to predict different contexts of every table. We show that the predicted contexts are useful in ranking tables against a query using a multi-field ranking approach. We evaluate our approach using public WikiTables data, and we demonstrate improvements in terms of NDCG over unsupervised baseline methods in the table retrieval task.  more » « less
Award ID(s):
1816325
NSF-PAR ID:
10164850
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
1238-1244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A search engine's ability to retrieve desirable datasets is important for data sharing and reuse. Existing dataset search engines typically rely on matching queries to dataset descriptions. However, a user may not have enough prior knowledge to write a query using terms that match with description text. We propose a novel schema label generation model which generates possible schema labels based on dataset table content. We incorporate the generated schema labels into a mixed ranking model which not only considers the relevance between the query and dataset metadata but also the similarity between the query and generated schema labels. To evaluate our method on real-world datasets, we create a new benchmark specifically for the dataset retrieval task. Experiments show that our approach can effectively improve the precision and NDCG scores of the dataset retrieval task compared with baseline methods. We also test on a collection of Wikipedia tables to show that the features generated from schema labels can improve the unsupervised and supervised web table retrieval task as well. 
    more » « less
  2. null (Ed.)
    Ad hoc table retrieval is the problem of identifying the most relevant datasets to a user's query. We present an approach to the problem that builds a knowledge graph by combining information about the collection of tables with external sources such as WordNet and pretrained Glove embeddings. We apply multi-relational graph convolutional networks to learn embeddings for the knowledge graph nodes and utilize three different methods to create vectors representing the tables and queries from these embeddings. We create a novel learning-to-rank neural architecture that incorporates the multiple embeddings in order to improve table retrieval results. We evaluate our approach using two large collections of tables from public WikiTables and Web tables data, demonstrating substantial improvements over state-of-the-art methods in table retrieval. 
    more » « less
  3. null (Ed.)
    We address the problem of ad hoc table retrieval via a new neural architecture that incorporates both semantic and relevance matching. Understanding the connection between the structured form of a table and query tokens is an important yet neglected problem in information retrieval. We use a learning- to-rank approach to train a system to capture semantic and relevance signals within interactions between the structured form of candidate tables and query tokens. Convolutional filters that extract contextual features from query/table interactions are combined with a feature vector based on the distributions of term similarity between queries and tables. We propose using row and column summaries to incorporate table content into our new neural model. We evaluate our approach using two datasets, and we demonstrate substantial improvements in terms of retrieval metrics over state-of-the-art methods in table retrieval and document retrieval, and neural architectures from sentence, document, and table type classification adapted to the table retrieval task. Our ablation study supports the importance of both semantic and relevance matching in the table retrieval. 
    more » « less
  4. Table search aims to retrieve a list of tables given a user's query. Previous methods only consider the textual information of tables and the structural information is rarely used. In this paper, we propose to model the complex relations in the table corpus as one or more graphs and then utilize graph neural networks to learn representations of queries and tables. We show that the text-based table retrieval methods can be further improved by graph-based predictions which fuse multiple field-level information. 
    more » « less
  5. The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct a new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques. 
    more » « less