skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Table Retrieval Using Multiple Context Embeddings for Attributes
Table retrieval is the task of extracting the most relevant tables to answer a user's query. Table retrieval is an important task because many domains have tables that contain useful information in a structured form. Given a user's query, the goal is to obtain a relevance ranking for query-table pairs, such that higher ranked tables should be more relevant to the query. In this paper, we present a context-aware table retrieval method that is based on a novel embedding for attribute tokens. We find that differentiated types of contexts are useful in building word embeddings. We also find that including a specialized representation of numerical cell values in our model improves table retrieval performance. We use the trained model to predict different contexts of every table. We show that the predicted contexts are useful in ranking tables against a query using a multi-field ranking approach. We evaluate our approach using public WikiTables data, and we demonstrate improvements in terms of NDCG over unsupervised baseline methods in the table retrieval task.  more » « less
Award ID(s):
1816325
PAR ID:
10164850
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
1238-1244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ad hoc table retrieval is the problem of identifying the most relevant datasets to a user's query. We present an approach to the problem that builds a knowledge graph by combining information about the collection of tables with external sources such as WordNet and pretrained Glove embeddings. We apply multi-relational graph convolutional networks to learn embeddings for the knowledge graph nodes and utilize three different methods to create vectors representing the tables and queries from these embeddings. We create a novel learning-to-rank neural architecture that incorporates the multiple embeddings in order to improve table retrieval results. We evaluate our approach using two large collections of tables from public WikiTables and Web tables data, demonstrating substantial improvements over state-of-the-art methods in table retrieval. 
    more » « less
  2. Retrieval-augmented generation (RAG) systems can effectively address user queries by leveraging indexed document corpora to retrieve the relevant contexts. Ranking techniques have been adopted in RAG systems to sort the retrieved contexts by their relevance to the query so that users can select the most useful contexts for their downstream tasks. While many existing ranking methods rely on the similarity between the embedding vectors of the context and query to measure relevance, it is important to note that similarity does not equate to relevance in all scenarios. Some ranking methods use large language models (LLMs) to rank the contexts by putting the query and the candidate contexts in the prompt and asking LLM about their relevance. The scalability of those methods is contingent on the number of candidate contexts and the context window of those LLMs. Also, those methods require fine-tuning the LLMs, which can be computationally expensive and require domain-related data. In this work, we propose a scalable ranking framework that does not involve LLM training. Our framework uses an off-the-shelf LLM to hypothesize the user's query based on the retrieved contexts and ranks the contexts based on the similarity between the hypothesized queries and the user query. Our framework is efficient at inference time and is compatible with many other context retrieval and ranking techniques. Experimental results show that our method improves the ranking performance of retrieval systems in multiple benchmarks. 
    more » « less
  3. A search engine's ability to retrieve desirable datasets is important for data sharing and reuse. Existing dataset search engines typically rely on matching queries to dataset descriptions. However, a user may not have enough prior knowledge to write a query using terms that match with description text. We propose a novel schema label generation model which generates possible schema labels based on dataset table content. We incorporate the generated schema labels into a mixed ranking model which not only considers the relevance between the query and dataset metadata but also the similarity between the query and generated schema labels. To evaluate our method on real-world datasets, we create a new benchmark specifically for the dataset retrieval task. Experiments show that our approach can effectively improve the precision and NDCG scores of the dataset retrieval task compared with baseline methods. We also test on a collection of Wikipedia tables to show that the features generated from schema labels can improve the unsupervised and supervised web table retrieval task as well. 
    more » « less
  4. null (Ed.)
    We address the problem of ad hoc table retrieval via a new neural architecture that incorporates both semantic and relevance matching. Understanding the connection between the structured form of a table and query tokens is an important yet neglected problem in information retrieval. We use a learning- to-rank approach to train a system to capture semantic and relevance signals within interactions between the structured form of candidate tables and query tokens. Convolutional filters that extract contextual features from query/table interactions are combined with a feature vector based on the distributions of term similarity between queries and tables. We propose using row and column summaries to incorporate table content into our new neural model. We evaluate our approach using two datasets, and we demonstrate substantial improvements in terms of retrieval metrics over state-of-the-art methods in table retrieval and document retrieval, and neural architectures from sentence, document, and table type classification adapted to the table retrieval task. Our ablation study supports the importance of both semantic and relevance matching in the table retrieval. 
    more » « less
  5. Table search aims to retrieve a list of tables given a user's query. Previous methods only consider the textual information of tables and the structural information is rarely used. In this paper, we propose to model the complex relations in the table corpus as one or more graphs and then utilize graph neural networks to learn representations of queries and tables. We show that the text-based table retrieval methods can be further improved by graph-based predictions which fuse multiple field-level information. 
    more » « less