Table retrieval is the task of extracting the most relevant tables to answer a user's query. Table retrieval is an important task because many domains have tables that contain useful information in a structured form. Given a user's query, the goal is to obtain a relevance ranking for query-table pairs, such that higher ranked tables should be more relevant to the query. In this paper, we present a context-aware table retrieval method that is based on a novel embedding for attribute tokens. We find that differentiated types of contexts are useful in building word embeddings. We also find that including a specialized representation of numerical cell values in our model improves table retrieval performance. We use the trained model to predict different contexts of every table. We show that the predicted contexts are useful in ranking tables against a query using a multi-field ranking approach. We evaluate our approach using public WikiTables data, and we demonstrate improvements in terms of NDCG over unsupervised baseline methods in the table retrieval task. 
                        more » 
                        « less   
                    
                            
                            Relational Graph Embeddings for Table Retrieval
                        
                    
    
            Ad hoc table retrieval is the problem of identifying the most relevant datasets to a user's query. We present an approach to the problem that builds a knowledge graph by combining information about the collection of tables with external sources such as WordNet and pretrained Glove embeddings. We apply multi-relational graph convolutional networks to learn embeddings for the knowledge graph nodes and utilize three different methods to create vectors representing the tables and queries from these embeddings. We create a novel learning-to-rank neural architecture that incorporates the multiple embeddings in order to improve table retrieval results. We evaluate our approach using two large collections of tables from public WikiTables and Web tables data, demonstrating substantial improvements over state-of-the-art methods in table retrieval. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1816325
- PAR ID:
- 10254047
- Date Published:
- Journal Name:
- IEEE International Conference on Big Data: Seventh International Workshop on High Performance Big Graph Data Management, Analysis, and Mining (BigGraphs 2020)
- Page Range / eLocation ID:
- 3005 to 3014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)We address the problem of ad hoc table retrieval via a new neural architecture that incorporates both semantic and relevance matching. Understanding the connection between the structured form of a table and query tokens is an important yet neglected problem in information retrieval. We use a learning- to-rank approach to train a system to capture semantic and relevance signals within interactions between the structured form of candidate tables and query tokens. Convolutional filters that extract contextual features from query/table interactions are combined with a feature vector based on the distributions of term similarity between queries and tables. We propose using row and column summaries to incorporate table content into our new neural model. We evaluate our approach using two datasets, and we demonstrate substantial improvements in terms of retrieval metrics over state-of-the-art methods in table retrieval and document retrieval, and neural architectures from sentence, document, and table type classification adapted to the table retrieval task. Our ablation study supports the importance of both semantic and relevance matching in the table retrieval.more » « less
- 
            EDBT (Ed.)In data lakes, one of the core challenges remains finding rele- vant tables. We introduce the notion of semantic data lakes, i.e., repositories where datasets are linked to concepts and entities described in a knowledge graph (KG). We formalize the problem of semantic table search, i.e., retrieving tables containing informa- tion semantically related to a given set of entities, and provide the first formal definition of semantic relatedness of a dataset to tuples of entities. Our solution offers the first general framework to compute the semantic relevance of the contents of a table w.r.t. entity tuples, as well as efficient algorithms (exploiting seman- tic signals, such as entity types and embeddings) to scale the semantic search to repositories with hundreds of thousands of distinct tables. Our extensive experiments on both real-world and synthetic benchmarks show that our approach is able to retrieve more relevant tables (up to 5.4 times higher recall) in comparison to existing methods while ensuring fast response times (up to 17 times faster with LSH).more » « less
- 
            Table search aims to retrieve a list of tables given a user's query. Previous methods only consider the textual information of tables and the structural information is rarely used. In this paper, we propose to model the complex relations in the table corpus as one or more graphs and then utilize graph neural networks to learn representations of queries and tables. We show that the text-based table retrieval methods can be further improved by graph-based predictions which fuse multiple field-level information.more » « less
- 
            A search engine's ability to retrieve desirable datasets is important for data sharing and reuse. Existing dataset search engines typically rely on matching queries to dataset descriptions. However, a user may not have enough prior knowledge to write a query using terms that match with description text. We propose a novel schema label generation model which generates possible schema labels based on dataset table content. We incorporate the generated schema labels into a mixed ranking model which not only considers the relevance between the query and dataset metadata but also the similarity between the query and generated schema labels. To evaluate our method on real-world datasets, we create a new benchmark specifically for the dataset retrieval task. Experiments show that our approach can effectively improve the precision and NDCG scores of the dataset retrieval task compared with baseline methods. We also test on a collection of Wikipedia tables to show that the features generated from schema labels can improve the unsupervised and supervised web table retrieval task as well.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    