skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fundamental figure of merit for engineering dipole-dipole interactions
Over the last decade there has been a debate regarding the role of the photonic environment in enhancing, inhibiting and imparting coherence to dipole-dipole interactions. We develop a unified figure of merit to conclusively explain multiple recent experiments.  more » « less
Award ID(s):
1654676
PAR ID:
10165119
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Conference on Lasers and Electro Optics (CLEO)
Page Range / eLocation ID:
FTu3D.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dipole-dipole interactions ( V dd ) between closely spaced atoms and molecules are related to real photon and virtual photon exchange between them and decrease in the near field connected with the characteristic Coulombic dipole field law. The control and modification of this marked scaling with distance have become a long-standing theme in quantum engineering since dipole-dipole interactions govern Van der Waals forces, collective Lamb shifts, atom blockade effects, and Förster resonance energy transfer. We show that metamaterials can fundamentally modify these interactions despite large physical separation between interacting quantum emitters. We demonstrate a two orders of magnitude increase in the near-field resonant dipole-dipole interactions at intermediate field distances (10 times the near field) and observe the distance scaling law consistent with a super-Coulombic interaction theory curtailed only by absorption and finite size effects of the metamaterial constituents. We develop a first-principles numerical approach of many-body dipole-dipole interactions in metamaterials to confirm our theoretical predictions and experimental observations. In marked distinction to existing approaches of engineering radiative interactions, our work paves the way for controlling long-range dipole-dipole interactions using hyperbolic metamaterials and natural hyperbolic two-dimensional materials. 
    more » « less
  2. Scott J. Miller (Ed.)
    Ground state destabilization is a promising strategy to modulate rotational barriers in amphidynamic crystals. DFT studies of polar phenylenes installed as rotators in pillared-paddle wheel metal-organic frameworks were performed to investigate the effects of ground state destabilization on their rotational dynamics. We found that as the steric size of phenylene substituents increases the ground state destabilization effect is also increased. Specifically, a significant destabilization of the ground state energy occurred as the size of the substituents increased, with values ranging from 2 kcal/mol to 11.7 kcal/mol. An evalua-tion of the effects of substituents on dipole-dipole interaction energies and rotational barriers suggest that it should be possi-ble to engineer amphidynamic crystals where the dipole-dipole interaction energy becomes comparable to the rotational barri-ers. Notably, dipole-dipole interaction energies reached values ranging from 0.6 kcal/mol to 2.4 kcal/mol. We propose that careful selection of polar substituents with different size may help create temperature-responsive materials with switchable collective polarization. 
    more » « less
  3. Carboranedithiol isomers adsorbing with opposite orientations of their dipoles on surfaces are self-assembled together to form mixed monolayers where both lateral dipole−dipole and lateral thiol−thiolate (S−H···S) interactions provide enhanced stability over single-component monolayers. We demonstrate the first instance of the ability to map individual isomers in a mixed monolayer using the model system carboranedithiols on Au{111}. The addition of methyl groups to one isomer provides both an enhanced dipole moment and extra apparent height for differentiation via scanning tunneling microscopy (STM). Associated computational investigations rationalize favorable interactions of mixed pairs and the associated stability changes that arise from these interactions. Both STM images and Monte Carlo simulations yield similarly structured mixed monolayers, where approximately 10% of the molecules have reversed dipole moment orientations but no direct chemical attachment to the surface, leading to homogeneous monolayers with no apparent phase separation. Deprotonating the thiols by depositing the molecules under basic conditions eliminates the lateral S−H···S interactions while accentuating the dipole− dipole forces. The molecular system investigated is composed of isomeric molecules with opposite orientations of dipoles and identical surface packing, which enables the mapping of individual molecules within the mixed monolayers and enables analyses of the contributions of the relatively weak lateral interactions to the overall stability of the assemblies. 
    more » « less
  4. We experimentally demonstrate that the dipole-dipole interaction in a potassium vapor at cold atom density can be observed using optical 2D coherent spectroscopy. This paves the way to implement 2D spectroscopy in cold atoms. 
    more » « less
  5. We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body dipole-dipole interactions in a one-dimensional array. Using simplified models of a realistic experimental system, we study the initial-state survival probability, mean level spacing, spread of entanglement, and properties of the energy eigenstates. By exploring a range of disorders and interaction strengths, we find regions in parameter space where the three- and four-body dynamics either fail to thermalize or do so slowly. The interplay between the stronger hopping and weaker field-tuned interactions gives rise to quantum many-body scar states, which play a critical role in slowing the dynamics of the three- and four-body interactions. Published by the American Physical Society2024 
    more » « less