Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy (AFM)-based infrared microscopy that bypasses Abbe's diffraction limit on spatial resolution. The PFIR microscopy utilizes a nanoscopically sharp AFM tip to mechanically detect the tip-enhanced infrared photothermal response of the sample in the time domain. The time-gated mechanical signals of cantilever deflections transduce the infrared absorption of the sample, delivering infrared imaging and spectroscopy capability at sub 10 nm spatial resolution. Both the infrared absorption response and mechanical properties of the sample are obtained in parallel while preserving the surface integrity of the sample. This review describes the constructions of the PFIR microscope and several variations, including multiple-pulse excitation, total internal reflection geometry, dual-color configuration, liquid-phase operations, and integrations with simultaneous surface potential measurement. Representative applications of PFIR microscopy are also included in this review. In the outlook section, we lay out several future directions of innovations in PFIR microscopy and applications in chemical and material research.
more »
« less
Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization
Abstract Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging offers non-perturbative, molecular contrast for nanoscale characterization. The need to mitigate measurement artifacts and enhance sensitivity, however, requires narrowly-defined and strict sample preparation protocols. This limits reliable and facile characterization; for example, when using common substrates such as Silicon or glass. Here, we demonstrate a closed-loop (CL) piezo controller design for responsivity-corrected AFM-IR imaging. Instead of the usual mode of recording cantilever deflection driven by sample expansion, the principle of our approach is to maintain a zero amplitude harmonic cantilever deflection by CL control of a subsample piezo. We show that the piezo voltage used to maintain a null deflection provides a reliable measure of the local IR absorption with significantly reduced noise. A complete analytical description of the CL operation and characterization of the controller for achieving robust performance are presented. Accurate measurement of IR absorption of nanothin PMMA films on glass and Silicon validates the robust capability of CL AFM-IR in routine mapping of nanoscale molecular information.
more »
« less
- Award ID(s):
- 1720633
- PAR ID:
- 10165154
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is considerable interest in measuring, with nanoscale spatial resolution, the physical properties of lipid membranes because of their role in the physiology of living systems. Due to its ability to nondestructively image surfaces in solution, tapping mode atomic force microscopy (TMAFM) has proven to be a useful technique for imaging lipid membranes. However, further information concerning the mechanical properties of surfaces is contained within the time-resolved tip/sample force interactions. The tapping forces can be recovered by taking the second derivative of the cantilever deflection signal and scaling by the effective mass of the cantilever; this technique is referred to as scanning probe acceleration microscopy. Herein, we describe how the maximum and minimum tapping forces change with surface mechanical properties. Furthermore, we demonstrate how these changes can be used to measure mechanical changes in lipid membranes containing cholesterol.more » « less
-
A numerical verification of an experimental method used to estimate hydrodynamic forces in contact resonance atomic force microscopy (CR AFM) is performed. The experimental estimation technique, known as the Hydrodynamic Reconstruction Method (HRM), is verified for three distinct cantilever geometries at several vibrational eigenmodes and sample stiffnesses. The results of the analysis are discussed and recommendations for the applicable measurement range of the HRM are provided.more » « less
-
Abstract During drying, liquid‐applied particulate coatings develop stress and are consequently prone to stress‐induced defects, such as cracking, curling, and delamination. In this work, the stress development and cracking of coatings, prepared from aqueous silica and zinc oxide particle suspensions, were characterized using cantilever beam deflection with simultaneous imaging of the coating surface. Drying uniformity was improved and lateral or edge‐in drying was discouraged by using thin silicone walls around the perimeter of the cantilever. Coatings prepared from larger monodisperse silica particles (D50∼ 0.9 µm) dried uniformly but had a high critical cracking thickness (>150 µm) that prevented simultaneous study of stress development and cracking. Coatings prepared from smaller silica particles (D50∼ 0.3 µm) cracked readily at low thicknesses but exhibited edge‐in drying that complicated the stress measurement data. This drying nonuniformity was connected to the potential for these small particles to accumulate at the coating surface during drying. Hence, the selection of particle size and density was critical to drying uniformity when characterizing stress development and cracking. Coatings prepared from suspensions of zinc oxide particles (D50∼ 0.4 µm) were well‐suited for these studies, with uniform drying stress peaking at ∼1 MPa. Characteristic features in the stress development data above and below the critical cracking thickness (53 µm) were identified, demonstrating that cantilever beam deflection is a useful tool for studying the effectiveness of crack mitigation methods and the fundamentals of coating fracture during drying.more » « less
-
Abstract The effective quality factor of the cantilever plays a fundamental role in dynamic mode atomic force microscopy. Here we present a technique to modify the quality factor of an atomic force microscopy cantilever within a Fabry–Perot optical interferometer. The experimental setup uses two separate laser sources to detect and excite the oscillation of the cantilever. While the intensity modulation of the excitation laser drives the oscillation of the cantilever, the average intensity can be used to modify the quality factor via optomechanical force without changing the fiber-cantilever cavity length. The technique enables users to optimize the quality factor for different types of measurements without influencing the deflection measurement sensitivity. An unexpected frequency shift was observed and modelled as temperature dependence of the cantilever’s Young’s modulus, which was validated using finite element simulation. The model was used to compensate for the thermal frequency shift. The simulation provided relations between optical power, temperature, and frequency shift.more » « less
An official website of the United States government
