skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Control of quality factor of atomic force microscopy cantilever by cavity optomechanical effect
Abstract The effective quality factor of the cantilever plays a fundamental role in dynamic mode atomic force microscopy. Here we present a technique to modify the quality factor of an atomic force microscopy cantilever within a Fabry–Perot optical interferometer. The experimental setup uses two separate laser sources to detect and excite the oscillation of the cantilever. While the intensity modulation of the excitation laser drives the oscillation of the cantilever, the average intensity can be used to modify the quality factor via optomechanical force without changing the fiber-cantilever cavity length. The technique enables users to optimize the quality factor for different types of measurements without influencing the deflection measurement sensitivity. An unexpected frequency shift was observed and modelled as temperature dependence of the cantilever’s Young’s modulus, which was validated using finite element simulation. The model was used to compensate for the thermal frequency shift. The simulation provided relations between optical power, temperature, and frequency shift.  more » « less
Award ID(s):
2122041 2117438 2044920
PAR ID:
10509575
Author(s) / Creator(s):
; ;
Publisher / Repository:
10.35848/1347-4065/ad39f6
Date Published:
Journal Name:
Japanese Journal of Applied Physics
Volume:
63
Issue:
4
ISSN:
0021-4922
Page Range / eLocation ID:
04SP84
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical whispering-gallery-mode microresonators with ultrahigh quality factors and small mode volumes have played an important role in modern physics. They have been demonstrated as a diverse platform for a wide range of applications in photonics, such as nonlinear optics, optomechanics, quantum optics, and information processing. Thermal behaviors induced by power build-up in the resonators or environmental perturbations are ubiquitous in high-quality-factor whispering-gallery-mode resonators and have played an important role in their operation for various applications. In this review, we discuss the mechanisms of laser-field-induced thermal nonlinear effects, including thermal bistability and thermal oscillation. With the help of the thermal bistability effect, optothermal spectroscopy and optical nonreciprocity have been demonstrated. By tuning the temperature of the environment, the resonant mode frequency will shift, which can also be used for thermal sensing/tuning applications. The thermal locking technique and thermal imaging mechanisms are discussed briefly. Finally, we review some techniques employed to achieve thermal stability in a high-quality-factor resonator system. 
    more » « less
  2. A numerical verification of an experimental method used to estimate hydrodynamic forces in contact resonance atomic force microscopy (CR AFM) is performed. The experimental estimation technique, known as the Hydrodynamic Reconstruction Method (HRM), is verified for three distinct cantilever geometries at several vibrational eigenmodes and sample stiffnesses. The results of the analysis are discussed and recommendations for the applicable measurement range of the HRM are provided. 
    more » « less
  3. There is considerable interest in measuring, with nanoscale spatial resolution, the physical properties of lipid membranes because of their role in the physiology of living systems. Due to its ability to nondestructively image surfaces in solution, tapping mode atomic force microscopy (TMAFM) has proven to be a useful technique for imaging lipid membranes. However, further information concerning the mechanical properties of surfaces is contained within the time-resolved tip/sample force interactions. The tapping forces can be recovered by taking the second derivative of the cantilever deflection signal and scaling by the effective mass of the cantilever; this technique is referred to as scanning probe acceleration microscopy. Herein, we describe how the maximum and minimum tapping forces change with surface mechanical properties. Furthermore, we demonstrate how these changes can be used to measure mechanical changes in lipid membranes containing cholesterol. 
    more » « less
  4. Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) enables the characterization of individual biological molecules through the application of mechanical force. The spatiotemporal resolution of such measurements depends greatly on the AFM cantilever that is used, specifically its stiffness, hydrodynamic drag, and material composition. Prior work has shown that focused ion beam (FIB) lithographic modification of small cantilevers can be used to lower the spring constant (and thus force noise) and drift while maintaining a relatively fast time response. Published methods for implementing such optimization rely on specific FIB instruments and cantilever types, limiting broad implementation of these methods to improve SMFS data quality. Here, we show that it is possible to achieve such optimized properties using generalized techniques applicable to a broader array of FIB instruments and starting from new types of cantilevers that are presently commercially available. Modified cantilevers exhibited a 90% reduction in spring constant, sub-pN force drift to tens of seconds, and a time response of ∼25 μs in the liquid environment relevant to biological measurements. 
    more » « less
  5. This report is on experiments and theory on the process of optically stimulated electron population density redistribution in Si-substituted yttrium-iron garnet single crystals at 77 K. It was determined that a photo-induced uniaxial anisotropy field arose in the YIG:Si sample in response to illumination by quasi-linearly polarized laser (λ = 808 nm) leading to redistribution of Fe2+ ions among the nonequivalent octahedral sites. The photo-induced field was measured by variation of ferromagnetic resonance (FMR) frequencies in the X-band. The measured FMR frequency shift demonstrated a pronounced dependence on the polarization vector orientation with respect to crystallographic axes, in accordance with the theory discussed here. The frequency shift dependence on light intensity (for optimal polarization orientation) was found to be nearly linear, at least within the output intensity range of the optical source. The maximum frequency shift was −130 MHz for 75 mW applied optical power. A similar phenomenon was also observed at room temperature but was attributed to the sample heating by the incident light. The results presented here demonstrate the potential of the phenomenon for application in the development of ferrite signal processing devices with dual tuning by both magnetic field and optical irradiation. 
    more » « less