skip to main content

Search for: All records

Award ID contains: 1818884

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing systemmore »effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient.« less
  2. Blockchain technology has recently gained high popularity in data security, primarily to mitigate against data breach and manipulation. Since its inception in 2008, it has been applied in different areas mainly to maintain data integrity and consistency. Blockchain has been tailored to secure data due to its data immutability and distributive technology. Despite the high success rate in data security, the inability to identify compromised insider nodes is one of the significant problems encountered in blockchain architectures. A Blockchain network is made up of nodes that initiate, verify and validate transactions. If compromised, these nodes can manipulate submitted transactions, inject fake transactions, or retrieve unauthorized information that might eventually compromise the stored data's integrity and consistency. This paper proposes a novel method of detecting these compromised blockchain nodes using a server-side authentication process and thwart their activities before getting updated in the blockchain ledger. In evaluating the proposed system, we perform four common insider attacks, which fall under the following three categories: (1)Those attacks targeting the Blockchain to bring it down. (2) the attacks that attempt to inject fake data into the database. (3) The attacks that attempt to hijack or retrieve unauthorized data. We described how we implement themore »attacks and how our architecture detects them before they impact the network. Finally, we displayed the attack detection time for each attack and compared our approach with other existing methods.« less
  3. The extreme bandwidth and performance of 5G mobile networks changes the way we develop and utilize digital services. Within a few years, 5G will not only touch technology and applications, but dramatically change the economy, our society and individual life. One of the emerging technologies that enables the evolution to 5G by bringing cloud capabilities near to the end users is Edge Computing or also known as Multi-Access Edge Computing (MEC) that will become pertinent towards the evolution of 5G. This evolution also entails growth in the threat landscape and increase privacy in concerns at different application areas, hence security and privacy plays a central role in the evolution towards 5G. Since MEC application instantiated in the virtualized infrastructure, in this paper we present a distributed application that aims to constantly introspect multiple virtual machines (VMs) in order to detect malicious activities based on their anomalous behavior. Once suspicious processes detected, our IDS in real-time notifies system administrator about the potential threat. Developed software is able to detect keyloggers, rootkits, trojans, process hiding and other intrusion artifacts via agent-less operation, by operating remotely or directly from the host machine. Remote memory introspection means no software to install, no notice tomore »malware to evacuate or destroy data. Experimental results of remote VMI on more than 50 different malicious code demonstrate average anomaly detection rate close to 97%. We have established wide testbed environment connecting networks of two universities Kyushu Institute of Technology and The City College of New York through secure GRE tunnel. Conducted experiments on this testbed deliver high response time of the proposed system.« less
  4. This paper will demonstrate a novel method for consolidating data in an engineered hypercube network for the purpose of optimizing query processing. Query processing typically calls for merging data collected from a small subset of server nodes in a network. This poses the problem of managing efficiently the exchange of data between processing nodes to complete some relational data operation. The method developed here is designed to minimize data transfer, measured as the product of data quantity and network distance, by delegating the processing to a node that is relatively central to the subset. A hypercube not only supports simple computation of network distance between nodes, but also allows for identifying a node to serve as the center for any data consolidation operations.We will show how the consolidation process can be performed by selecting a subgraph of a complex network to simplify the selection of a central node and thus facilitate the computations required. We will also show a prototype implementation of a hypercube using Software-Defined Networking to support query optimization in a distributed heterogeneous database system, making use of network distance information and data quantity.
  5. As organizations drastically expand their usage of collaborative systems and multi-user applications during this period of mass remote work, it is crucial to understand and manage the risks that such platforms may introduce. Improperly or carelessly deployed and configured systems hide security threats that can impact not only a single organization, but the whole economy. Cloud-based architecture is used in many collaborative systems, such as audio/video conferencing, collaborative document sharing/editing, distance learning and others. Therefore, it is important to understand that safety risk can be triggered by attacks on remote servers and confidential information might be compromised. In this paper, we present an AI powered application that aims to constantly introspect multiple virtual servers in order to detect malicious activities based on their anomalous behavior. Once the suspicious process(es) detected, the application in real-time notifies system administrator about the potential threat. Developed software is able to detect user space based keyloggers, rootkits, process hiding and other intrusion artifacts via agent-less operation, by operating directly from the host machine. Remote memory introspection means no software to install, no notice to malware to evacuate or destroy data. Conducted experiments on more than twenty different types of malicious applications provide evidence of highmore »detection accuracy« less
  6. With the development and spread of Internet of Things technologies, various types of data for IoT applications can be generated anywhere and at any time. Among such data, there are data that depend heavily on generation time and location. We define these data as spatiotemporal data (STD). In previous studies, we proposed a STD retention system using vehicular networks to achieve the “Local production and consumption of STD” paradigm. The system can quickly provide STD for users within a specific location by retaining the STD within the area. However, this system does not take into account that each type of STD has different requirements for STD retention. In particular, the lifetime of STD and the diffusion time to the entire area directly influence the performance of STD retention. Therefore, we propose an efficient diffusion and elimination control method for retention based on the requirements of STD. The results of simulation evaluation demonstrated that the proposed method can satisfy the requirements of STD, while maintaining a high coverage rate in the area.
  7. Analysis of large data sets is increasingly important in business and scientific research. One of the challenges in such analysis stems from uncertainty in data, which can produce anomalous results. This paper proposes a method for detecting an anomaly in time series data using a Support Vector Machine (SVM). Three different kernels of the SVM are analyzed to predict anomalies in the UCR time series benchmark data sets. Comparison of the three kernels shows that the defined parameter values of the Radial Basis Function (RBF) kernel are critical for improving the validity and accuracy in anomaly detection. Our results show that the RBF kernel of the SVM can be used to advantage in detecting anomalies.
  8. In IoT era, the growth of data variety is driven by crossdomain data fusion. In this paper, we advocate that “local production for local consumption (LPLC) paradigm” can be an innovative approach in cross-domain data fusion, and propose a new framework, geolocationcentric information platform (GCIP) that can produce and deliver diverse spatio-temporal content (STC). In the GCIP, (1) infrastructure-based geographic hierarchy edge network and (2) adhoc-based STC retention system are interplayed to provide both of geolocation-awareness and resiliency. Then, we discussed the concepts and the technical challenges of the GCIP. Finally, we implemented a proof-of-concepts of GCIP and demonstrated its ecacy through practical experiments on campus IPv6 network and simulation experiments.
  9. We previously proposed a method to locate high packetdelay variance links for OpenFlow networks by probing multicast measurement packets along a designed route and by collecting flow-stats of the probe packets from selected OpenFlow switches (OFSs). It is worth AQ1 noting that the packet-delay variance of a link is estimated based on arrival time intervals of probe packets without measuring delay times over the link. However, the previously used route scheme based on the shortest path tree may generate a probing route with many branches in a large network, resulting in many accesses to OFSs to locate all high delay variance links. In this paper, therefore, we apply an Eulerian cycle-based scheme which we previously developed, to control the number of branches in a multicast probing route. Our proposal can reduce the load on the control-plane (i.e., the number of accesses to OFSs) while maintaining an acceptable measurement accuracy with a light load on the data-plane. Additionally, the impacts of packet losses and correlated delays over links on those different types of loads are investigated. By comparing our proposal with the shortest path tree-based and the unicursal route schemes through numerical simulations, we evaluate the advantage of our proposal.
  10. This study focuses on an autonomous moving system for the automation of the harvesting process by high-performance machines in the forestry. Many fatal accidents occur due to the harvesting process. In this research, a navigation system has been developed to enable autonomous travel between accumulation sites and trees to be harvested to improve productivity and safety. A 3D map is generated by LiDAR observation, and harvester moves autonomously towards the tree as specified by the operator. A test of the harvesting process was performed in an experimental environment. The evaluation focused on the required time of the autonomous movement in the process. The effectiveness of the system was confirmed in operations such as row thinning by the results.