skip to main content


Title: Relations and bounds for the zeros of graph polynomials using vertex orbits
In this paper, we prove bounds for the unique, positive zero of O  G (z) := 1 −O G (z) , where O G ( z ) is the so-called orbit polynomial [1]. The orbit polynomial is based on the multiplic- ity and cardinalities of the vertex orbits of a graph. In [1] , we have shown that the unique, positive zero δ≤1 of O  G (z) can serve as a meaningful measure of graph symmetry. In this paper, we study special graph classes with a specified number of orbits and obtain bounds on the value of δ.  more » « less
Award ID(s):
1818884
PAR ID:
10165211
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied mathematics and computation
ISSN:
0096-3003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on the structural complexity of networks has produced many useful results in graph theory and applied disciplines such as engineering and data analysis. This paper is intended as a further contribution to this area of research. Here we focus on measures designed to compare graphs with respect to symmetry. We do this by means of a novel characteristic of a graph G, namely an ``orbit polynomial.'' A typical term of this univariate polynomial is of the form czn, where c is the number of orbits of size n of the automorphism group of G. Subtracting the orbit polynomial from 1 results in another polynomial that has a unique positive root, which can serve as a relative measure of the symmetry of a graph. The magnitude of this root is indicative of symmetry and can thus be used to compare graphs with respect to that property. In what follows, we will prove several inequalities on the unique positive roots of orbit polynomials corresponding to different graphs, thus showing differences in symmetry. In addition, we present numerical results relating to several classes of graphs for the purpose of comparing the new symmetry measure with existing ones. Finally, it is applied to a set of isomers of the chemical compound adamantane C10H16. We believe that the measure can be quite useful for tackling applications in chemistry, bioinformatics, and structure-oriented drug design. 
    more » « less
  2. Abstract May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ 4– o (1) but not O ( δ 4 ). Let M ( δ ) be the maximum number such that the following holds: for every ∊ > 0 and $G = {\mathbb{F}}_2^n$ with n sufficiently large, if A ⊆ G × G with A ≥ δ | G | 2 , then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” ( x , y ), ( x + d , y ), ( x , y + d ) ∈ A is at least ( M ( δ )–∊)| G | 2 . As a corollary via a recent result of Mandache, we conclude that M ( δ ) = δ 4– o (1) and M ( δ ) = ω ( δ 4 ). On the other hand, for 0 < δ < 1/2 and sufficiently large N , there exists A ⊆ [ N ] 3 with | A | ≥ δN 3 such that for every d ≠ 0, the number of corners ( x , y , z ), ( x + d , y , z ), ( x , y + d , z ), ( x , y , z + d ) ∈ A is at most δ c log(1/ δ ) N 3 . A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3. 
    more » « less
  3. Given a graph G, the zero forcing number of G, Z(G), is the minimum cardinality of any set S of vertices of which repeated applications of the forcing rule results in all vertices being in S. The forcing rule is: if a vertex v is in S, and exactly one neighbor u of v is not in S, then u is added to S in the next iteration. Hence the failed zero forcing number of a graph was defined to be the cardinality of the largest set of vertices which fails to force all vertices in the graph. A similar property called skew zero forcing was defined so that if there is exactly one neighbor u of v is not in S, then u is added to S in the next iteration. The difference is that vertices that are not in S can force other vertices. This leads to the failed skew zero forcing number of a graph, which is denoted by F−(G). In this paper, we provide a complete characterization of all graphs with F−(G)=1. Fetcie, Jacob, and Saavedra showed that the only graphs with a failed zero forcing number of 1 are either: the union of two isolated vertices; P3; K3; or K4. In this paper, we provide a surprising result: changing the forcing rule to a skew-forcing rule results in an infinite number of graphs with F−(G)=1. 
    more » « less
  4. Given a graph G, the zero forcing number of G, Z(G), is the smallest cardinality of any set S of vertices on which repeated applications of the forcing rule results in all vertices being in S. The forcing rule is: if a vertex v is in S, and exactly one neighbor u of v is not in S, then u is added to S in the next iteration. Zero forcing numbers have attracted great interest over the past 15 years and have been well studied. In this paper, we investigate the largest size of a set S that does not force all of the vertices in a graph to be in S. This quantity is known as the failed zero forcing number of a graph and will be denoted by F(G). We present new results involving this parameter. In particular, we completely characterize all graphs G where F(G)=2, solving a problem posed in 2015 by Fetcie, Jacob, and Saavedra. 
    more » « less
  5. Wootters, Mary ; Sanita, Laura (Ed.)
    The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets. 
    more » « less