Let f: {0, 1}n → {0, 1} be a boolean function, and let f∧(x, y) = f(x ∧ y) denote the AND-function of f, where x ∧ y denotes bit-wise AND. We study the deterministic communication complexity of f∧ and show that, up to a logn factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of f∧. This comes within a logn factor of establishing the log-rank conjecture for AND-functions with no assumptions on f. Our result stands in contrast with previous results on special cases of the log-rank conjecture, which needed significant restrictions on f such as monotonicity or low F2-degree. Our techniques can also be used to prove (within a logn factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of f∧ is polynomially related to the AND-decision tree complexity of f. The results rely on a new structural result regarding boolean functions f: {0, 1}n → {0, 1} with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing f has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials f: {0, 1}n → with a larger range.
more »
« less
Improved Hitting Set for Orbit of ROABPs
The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets.
more »
« less
- Award ID(s):
- 1909683
- PAR ID:
- 10351115
- Editor(s):
- Wootters, Mary; Sanita, Laura
- Date Published:
- Journal Name:
- Leibniz international proceedings in informatics
- Volume:
- 207
- ISSN:
- 1868-8969
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Guruswami, Venkatesan (Ed.)We explicitly construct the first nontrivial extractors for degree d ≥ 2 polynomial sources over 𝔽₂. Our extractor requires min-entropy k ≥ n - (√{log n})/((log log n / d)^{d/2}). Previously, no constructions were known, even for min-entropy k ≥ n-1. A key ingredient in our construction is an input reduction lemma, which allows us to assume that any polynomial source with min-entropy k can be generated by O(k) uniformly random bits. We also provide strong formal evidence that polynomial sources are unusually challenging to extract from, by showing that even our most powerful general purpose extractors cannot handle polynomial sources with min-entropy below k ≥ n-o(n). In more detail, we show that sumset extractors cannot even disperse from degree 2 polynomial sources with min-entropy k ≥ n-O(n/log log n). In fact, this impossibility result even holds for a more specialized family of sources that we introduce, called polynomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF sources are a natural new family of algebraic sources that lie at the intersection of polynomial and variety sources, and thus our impossibility result applies to both of these classical settings. This is especially surprising, since we do have variety extractors that slightly beat this barrier - implying that sumset extractors are not a panacea in the world of seedless extraction.more » « less
-
Saraf, Shubhangi (Ed.)There are only a few known general approaches for constructing explicit pseudorandom generators (PRGs). The "iterated restrictions" approach, pioneered by Ajtai and Wigderson [Ajtai and Wigderson, 1989], has provided PRGs with seed length polylog n or even Õ(log n) for several restricted models of computation. Can this approach ever achieve the optimal seed length of O(log n)? In this work, we answer this question in the affirmative. Using the iterated restrictions approach, we construct an explicit PRG for read-once depth-2 AC⁰[⊕] formulas with seed length O(log n) + Õ(log(1/ε)). In particular, we achieve optimal seed length O(log n) with near-optimal error ε = exp(-Ω̃(log n)). Even for constant error, the best prior PRG for this model (which includes read-once CNFs and read-once 𝔽₂-polynomials) has seed length Θ(log n ⋅ (log log n)²) [Chin Ho Lee, 2019]. A key step in the analysis of our PRG is a tail bound for subset-wise symmetric polynomials, a generalization of elementary symmetric polynomials. Like elementary symmetric polynomials, subset-wise symmetric polynomials provide a way to organize the expansion of ∏_{i=1}^m (1 + y_i). Elementary symmetric polynomials simply organize the terms by degree, i.e., they keep track of the number of variables participating in each monomial. Subset-wise symmetric polynomials keep track of more data: for a fixed partition of [m], they keep track of the number of variables from each subset participating in each monomial. Our tail bound extends prior work by Gopalan and Yehudayoff [Gopalan and Yehudayoff, 2014] on elementary symmetric polynomials.more » « less
-
We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of low-degree univariate rational functions at abscissas associated with the variables. We establish an equivalence up to rescaling with a generator introduced by Shpilka and Volkovich, which has a similar structure but uses multivariate polynomials. We initiate a systematic analytic study of the power of hitting set generators by characterizing their vanishing ideals, i.e., the sets of polynomials that they fail to hit. We provide two such characterizations for our generator. First, we develop a small collection of polynomials that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds on the minimum degree, sparseness, and partition class size of set-multilinearity in the vanishing ideal. Second, inspired by a connection to alternating algebra, we develop a structured deterministic membership test for the multilinear part of the vanishing ideal. We present a derivation based on alternating algebra along with the required background, as well as one in terms of zero substitutions and partial derivatives, avoiding the need for alternating algebra. As evidence of the utility of our analytic approach, we rederive known derandomization results based on the generator by Shpilka and Volkovich and present a new application in derandomization / lower bounds for read-once oblivious algebraic branching programs.more » « less
-
Megow, Nicole; Smith, Adam (Ed.)We study the question of local testability of low (constant) degree functions from a product domain 𝒮_1 × … × 𝒮_n to a field 𝔽, where 𝒮_i ⊆ 𝔽 can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if 𝒮_i = 𝒮 for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show that there exist asymmetric grids with |𝒮_1| = ⋯ = |𝒮_n| = 3 for which testing requires ω_n(1) queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function f:𝒮_1 × ⋯ × 𝒮_n → 𝒢, for an abelian group 𝒢 is said to be a junta-degree-d function if it is a sum of d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over large grids, which may be of independent interest.more » « less