skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Addressing Abrupt PV Disturbances, and Mitigating Net Load Profile’s Ramp and Peak Demands, Using Distributed Storage Devices
At high penetration level of photovoltaic (PV) generators, their abrupt disturbances (caused by moving clouds) cause voltage and frequency perturbations and increase system losses. Meanwhile, the daily irradiation profile increases the slope in the net-load profile, for example, California duck curve, which imposes the challenge of quickly bringing on-line conventional generators in the early evening hours. Accordingly, this paper presents an approach to achieve two objectives: (1) address abrupt disturbances caused by PV generators, and (2) shape the net load profile. The approach is based on employing battery energy storage (BES) systems coupled with PV generators and equipped with proper controls. The proposed BES addresses these two issues by realizing flexible power ramp-up and ramp-down rates by the combined PV and BES. This paper presents the principles, modeling and control design aspects of the proposed system. A hybrid dc/ac study system is simulated and the effectiveness of the proposed BES in reducing the impacts of disturbances on both the dc and ac subsystems is verified. It is then shown that the proposed PV-BES modifies the daily load profile to mitigate the required challenge for quickly bringing on-line synchronous generators.  more » « less
Award ID(s):
1808368
PAR ID:
10165661
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
5
ISSN:
1996-1073
Page Range / eLocation ID:
1024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Compared to a conventional mono-facial photovoltaic (PV) module, a bifacial one is more efficient as it receives light from not only the front but also the backside. The daily irradiance profile of a bifacial PV module is of a two-peak trajectory that almost coincides with the morning and evening peak demands. This interesting property helps distribution network operators better handle the issues caused by the abundance of conventional PVs during midday (i.e., Duck curve). Moreover, this two-humped profile can be incorporated into network operation strategies such as conservation voltage reduction (CVR). Thus, this paper proposes a new CVR framework that best uses the double-peak profile of bifacial PV modules to improve the voltage profile of a distribution network. The proposed framework optimally coordinates legacy voltage control devices, including on-load tap changers and voltage regulators, as well as Volt/VAr control of smart inverters. The effectiveness of the proposed framework is simulated and verified on the well-known modified 34-bus system using the Matlab-COM-OpenDSS platform. The results clearly demonstrate the advantages of bifacial PVs over their mono-facial counterparts. 
    more » « less
  2. A three-port multilevel inverter with two DC ports and an AC port using Flying Capacitor Multilevel (FCML) design based on Gallium Nitride (GaN) switches is proposed in this paper. Recently, FCML inverter has shown a superior ability for power conversion with high power density, improved Total Harmonic Distortion (THD), and efficiency. The presented three-port multilevel inverter fits various applications such as battery and photovoltaic (PV) grid integration and standalone AC load. The proposed inverter is experimentally verified by building a 3-kW prototype using GaN switches which include two 4-level FCML converter paths, each share the same bus capacitor (C bus ), which links them together. One FCML path is 1 kW that incorporates an unfolder for the DC-to-AC conversion and has achieved a peak efficiency of 98.2% with AC voltage and current THDs of 1.26% and 1.23%, respectively. While the second FCML converter path is 2 kW used for the DC-to-DC conversion and has achieved a 99.43% peak efficiency. 
    more » « less
  3. In this paper, we propose a droop-free distributed frequency control for the hybrid photovoltaic and battery energy storage (PV-BES) based microgrid. A distributed state of charge (SOC) balancing regulator achieves balanced SOC among the distributed generators (DGs) with BES utilizing a distributed average SOC estimator and the power sharing regulator ensures proportional power sharing among the PV-BES based DGs. These regulators generate two frequency correction terms which are then added to the microgrid rated frequency to generate references for the lower level controllers. The performance of the proposed distributed control is validated through real-time simulations in OPAL-RT, which demonstrates the effectiveness of the proposed control in achieving frequency regulation, SOC balancing, and active power sharing in the hybrid PV-BES units under both islanded and grid-connected operation modes. 
    more » « less
  4. MMC-based back-to-back (B2B) converters are promising for hybrid AC/DC transmission systems when integrating large scale PV sources. This paper proposes a novel configuration for hybrid AC transmission systems with B2B converters and multi-terminal direct current (MTDC) operation which facilitates the integration of PV energy and enhances the system stability and reliability. This is achieved by an advanced interconnection with two operation modes: 1-A bi-directional power flow via AC connections, and 2- Direct active power injection to the MTDC from PV source. Conventional outer, inner and capacitor voltage balancing control systems are utilized in this study for regulating the currents and voltages of B2B converter. Also, The Perturb and observe (P and O) technique is implemented for obtaining maximum power point tracking (MPPT) of the PV generation considering a dc-dc boost converter. The efficacy of this proposed configuration is verified through time-domain simulations carried out by MATLAB/SIMULINK. 
    more » « less
  5. DC networks are becoming more popular in a wide range of applications. However, the difficulty in detecting and localizing a high impedance series arc fault presents, a major challenge slowing the wider deployment of dc networks/microgrids. In this paper, a Kalman Filter (KF) based algorithm to monitor the operation of a dc microgrid by estimating the line admittances and consequently detecting/localizing series arc faults is introduced. The proposed algorithm uses voltage and current samples from the nodes in the distribution network to estimate the line admittances. By determining these values, it is possible to quickly isolate the faulted section and reconfigure the network after a fault occurs. Since, the disturbance caused by a high impedance series arc fault spreads across almost the entire microgrid, the KF algorithm is structured to detect the faulted line in the grid with precision. Simulation and Control Hardware in the Loop (CHIL) results are presented demonstrating the feasibility of implementation. 
    more » « less