Abstract The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub‐wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light–matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light–matter interactions across several scales.
more »
« less
Spatial Variability in Light Yields Colimitation of Primary Production by Both Light and Nutrients in a Forested Stream Ecosystem
More Like this
-
-
Recently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucidate the root causes behind the enhanced injection efficiency by employing mature laser diode structures with optimized heterojunction GaN/In0.17Ga0.83N/GaN TJs and UID GaN spacers to separate the optical mode from the heavily doped absorbing p-cladding regions. In such laser structures, polarization offsets at the electron blocking layer, spacer, and quantum barrier interfaces play discernable roles in carrier transport. By comparing a top-TJ structure to a bottom-TJ structure, and correlating features in the electroluminescence, capacitance-voltage, and current-voltage characteristics to unique signatures of the N- and Ga-polar polarization heterointerfaces in energy band diagram simulations, we identify that improved hole injection at low currents, and improved electron blocking at high currents, leads to higher injection efficiency and higher output power for the bottom-TJ device throughout 5 orders of current density (0.015–1000 A/cm2). Moreover, even with the addition of a UID GaN spacer, differential resistances are state-of-the-art, below 7 × 10−4Ωcm2. These results highlight the virtues of the bottom-TJ geometry for use in high-efficiency laser diodes.more » « less