Whether reagents and samples need to be combined to achieve a desired reaction, or precise concentrations of solutions need to be mixed and delivered downstream, thorough mixing remains a critical step in many microfluidics-based biological and chemical assays and analyses. To achieve complete mixing of fluids in microfluidic devices, researchers have utilized novel channel designs or active intervention to facilitate mass transport and exchange of fluids. However, many of these solutions have a major limitation: their design inherently limits their operational throughput; that is, different designs work at specific flow rates, whether that be low or high ranges, but have difficulties outside of their tailored design regimes. In this work, we present an acoustofluidic mixer that is capable of achieving efficient, thorough mixing across a broad range of flow rates (20–2000 μL min −1 ) using a single device. Our mixer combines active acoustofluidic mixing, which is responsible for mixing fluids at lower flow rates, with passive hydrodynamic mixing, which accounts for mixing fluids at higher flow rates. The mechanism, functionality, and performance of our acoustofluidic device are both numerically and experimentally validated. Additionally, the real-world potential of our device is demonstrated by synthesizing polymeric nanoparticles with comparable sizes over a two-order-of-magnitude wide range of flow rates. This device can be valuable in many biochemical, biological, and biomedical applications. For example, using our platform, one may synthesize nanoparticles/nanomaterials at lower flow rates to first identify optimal synthesis conditions without having to waste significant amounts of reagents, and then increase the flow rate to perform high-throughput synthesis using the optimal conditions, all using the same single device and maintaining performance.
more »
« less
An automated flow chemistry platform to decouple mixing and reaction times
Although a vital parameter in many colloidal nanomaterial syntheses, precursor mixing rates are typically inconsistent in batch processes and difficult to separate from reaction time in continuous flow systems. Here, we present a flow chemistry platform that decouples early-stage precursor mixing rates from reaction time (residence time) using solely off-the-shelf, commercially available, and standard dimension components. We then utilize the developed flow chemistry platform towards time- and material-efficient studies of the mass transfer-controlled synthesis of cesium lead bromide perovskite quantum dots.
more »
« less
- Award ID(s):
- 1902702
- PAR ID:
- 10165733
- Date Published:
- Journal Name:
- Reaction Chemistry & Engineering
- ISSN:
- 2058-9883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Synthesis of nanoparticles and particulate nanomaterials with tailored properties is a central step toward many applications ranging from energy conversion and imaging/display to biosensing and nanomedicine. While existing microfluidics‐based synthesis methods offer precise control over the synthesis process, most of them rely on passive, partial mixing of reagents, which limits their applicability and potentially, adversely alter the properties of synthesized products. Here, an acoustofluidic (i.e., the fusion of acoustic and microfluidics) synthesis platform is reported to synthesize nanoparticles and nanomaterials in a controllable, reproducible manner through acoustic‐streaming‐based active mixing of reagents. The acoustofluidic strategy allows for the dynamic control of the reaction conditions simply by adjusting the strength of the acoustic streaming. With this platform, the synthesis of versatile nanoparticles/nanomaterials is demonstrated including the synthesis of polymeric nanoparticles, chitosan nanoparticles, organic–inorganic hybrid nanomaterials, metal–organic framework biocomposites, and lipid‐DNA complexes. The acoustofluidic synthesis platform, when incorporated with varying flow rates, compositions, or concentrations of reagents, will lend itself unprecedented flexibility in establishing various reaction conditions and thus enable the synthesis of versatile nanoparticles and nanomaterials with prescribed properties.more » « less
-
The design and optimization of highly nonlinear and complex processes like plasma etching is challenging and timeconsuming. Significant effort has been devoted to creating plasma profile simulators to facilitate the development of etch recipes. Nevertheless, these simulators are often difficult to use in practice due to the large number of unknown parameters in the plasma discharge and surface kinetics of the etch material, the dependency of the etch rate on the evolving front profile, and the disparate length scales of the system. Here, we expand on the development of a previously published, data informed, Bayesian approach embodied in the platform RODEo (Recipe Optimization for Deposition and Etching). RODEo is used to predict etch rates and etch profiles over a range of powers, pressures, gas flow rates, and gas mixing ratios of an CF4/Ar gas chemistry. Three examples are shown: (1) etch rate predictions of an unknown material “X” using simulated experiments for a CF4/Ar chemistry, (2) etch rate predictions of SiO2 in a Plasma-Therm 790 RIE reactor for a CF4/Ar chemistry, and (3) profile prediction using level set methods.more » « less
-
Abstract The implementation of continuous flow technology is critical towards enhancing the application of photochemical reactions for industrial process development. However, there are significant time and resource constraints associated with translating discovery scale vial-based batch reactions to continuous flow scale-up conditions. Herein we report the development of a droplet microfluidic platform, which enables high-throughput reaction discovery in flow to generate pharmaceutically relevant compound libraries. This platform allows for enhanced material efficiency, as reactions can be performed on picomole scale. Furthermore, high-throughput data collection via on-line ESI mass spectrometry facilitates the rapid analysis of individual, nanoliter-sized reaction droplets at acquisition rates of 0.3 samples/s. We envision this high-throughput screening platform to expand upon the robust capabilities and impact of photochemical reactions in drug discovery and development.more » « less
-
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ∼ 1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.more » « less
An official website of the United States government

