Abstract: Colloidal all‐inorganic lead halide perovskite quantum dots (QDs) are high‐performance light‐emitting materials with size‐dependent optical properties and can be readily synthesized by mixing ionic precursors. However, the low formation energy of the perovskite lattice makes their growth too fast to control under regular reaction conditions. Diffusion‐regulated CsPbBr3 perovskite QD growth is reported on a nanometer‐sized liquid/liquid (L/L) interface supported in a micropipette tip without long‐chain organic ligands. The precursors are divided into two immiscible solutions across the L/L interface to avoid additional nucleation, and the QD growth kinetics are regulated by the constrained cationic diffusion field depending on the size of the micropipette tip. QDs with unprecedentedly small sizes (2.7 nm) are obtained due to the slowed‐down growth rates. The synthesis approach demonstrates the potential of micro‐controlled colloidal QD synthesis for mechanistic studies and micro‐fabrications.
more »
« less
Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot
The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine‐learning‐based experiment selection and high‐efficiency autonomous flow chemistry. With the self‐driving Artificial Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision‐tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre‐trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge‐transfer strategy further enhances the optoelectronic properties of the in‐flow synthesized QDs (within the same resources as the no‐prior‐knowledge experiments) and mitigates the issues of batch‐to‐batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy.
more »
« less
- Award ID(s):
- 1902702
- PAR ID:
- 10165734
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Page Range / eLocation ID:
- 2001626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The development of high quality, non-toxic ( i.e. , heavy-metal-free), and functional quantum dots (QDs) via ‘green’ and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag + cation exchange and Zn 2+ addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In 2 S 3 precursor nanocrystals, and the subsequent addition of Zn 2+ as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a ‘green’ and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of ‘green’, compositionally diverse QDs.more » « less
-
Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl3QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl3QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl3QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials.more » « less
-
Most high-quality quantum dots (QDs) are synthesized in the organic phase, and are often coated with polymers for use in aqueous biological environments. QDs can exhibit fluorescence losses during phase transfer, but evaluating underlying mechanisms ( e.g. , oxidation, surface etching, loss of colloidal stability) can be challenging because of variation in synthesis methods. Here, fluorescence stability of QDs encapsulated in block co-polymer (BCP) micelles was investigated as a function of BCP terminal functionalization ( i.e. , –OH, –COOH, and –NH 2 groups) and synthesis method ( i.e. , electrohydrodynamic emulsification-mediated selfassembly (EE-SA), sonication, and manual shaking). Fluorescence losses, fluorescence intensity, energy spectra, and surface composition were assessed using spectrofluorometry and cathodoluminescence spectroscopy (CL) with integrated X-ray photoemission spectroscopy (XPS). QDs passivated using charged BCPs exhibited 50–80% lower fluorescence intensity than those displaying neutral groups ( e.g. , –OH), which CL/XPS revealed to result from oxidation of surface Cd to CdO. Fluorescence losses were higher for processes with slow formation speed, but minimized in the presence of poly(vinyl alcohol) (PVA) surfactant. These data suggest slower BCP aggregation kinetics rather than electrostatic chain repulsion facilitated QD oxidation. Thus, polymer coating method and BCP structure influence QD oxidation during phase transfer and should be selected to maximize fast aggregation kinetics.more » « less
-
null (Ed.)Recent experimental advancements have enabled the creation of tunable localized electrostatic potentials in graphene/hexagonal boron nitride (hBN) heterostructures without concealing the graphene surface. These potentials corral graphene electrons yielding systems akin to electrostatically defined quantum dots (QDs). The spectroscopic characterization of these exposed QDs with the scanning tunneling microscope (STM) revealed intriguing resonances that are consistent with a tunneling probability of 100% across the QD walls. This effect, known as Klein tunneling, is emblematic of relativistic particles, underscoring the uniqueness of these graphene QDs. Despite the advancements with electrostatically defined graphene QDs, a complete understanding of their spectroscopic features still remains elusive. In this study, we address this lapse in knowledge by comprehensively considering the electrostatic environment of exposed graphene QDs. We then implement these considerations into tight binding calculations to enable simulations of the graphene QD local density of states. We find that the inclusion of the STM tip’s electrostatics in conjunction with that of the underlying hBN charges reproduces all of the experimentally resolved spectroscopic features. Our work provides an effective approach for modeling the electrostatics of exposed graphene QDs. The methods discussed here can be applied to other electrostatically defined QD systems that are also exposed.more » « less
An official website of the United States government

