skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep XMM–Newton observations of the most distant SPT-SZ galaxy cluster
ABSTRACT We present results from a 577 ks XMM–Newton observation of SPT-CL J0459–4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev–Zel’dovich effect. The data confirm the cluster’s high redshift, z = 1.71 ± 0.02, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $$M_{500}=(1.8\pm 0.2)\times 10^{14}\, {\rm M}_{\odot }$$; cluster emission is detected above the background to a radius of $$\sim \!2.2\, r_{500}$$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of 7.2 ± 0.3 keV and metallicity with respect to Solar of $$Z/\, Z_{\odot }=0.37\pm 0.08$$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster centre; at radii $$r\gt 0.3\, r_{500}$$, we find $$Z/\, Z_{\odot }=0.33\pm 0.17$$ in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.  more » « less
Award ID(s):
1852617
PAR ID:
10165835
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1554 to 1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Compton-y maps from the 2500 deg2 SPT-SZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $$\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoom-in hydrodynamical simulations from the three hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = 4.58 ± 1.24 at 2.0σ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyse clusters from the Planck and Atacama Cosmology Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius ($$R_{\rm sh,\, acc}$$) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, $$R_{\rm sh,\, acc}/R_{\rm sp}\gt 2.16 \pm 0.59$$. 
    more » « less
  2. ABSTRACT We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 < z < 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev–Zel’dovich effect surveys, and observed with both the XMM–Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r < 0.3r500 and 0.3 < r/r500 < 1.0. For the outer bin, the combined measurement for all 10 clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power-law model of the form Z ∝ (1 + z)γ, we measure a slope $$\gamma = -0.5^{+0.4}_{-0.3}$$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2. 
    more » « less
  3. ABSTRACT Recent searches for the hosts of z ∼ 4 damped Ly α absorbers (DLAs) have detected bright galaxies at distances of tens of kpc from the DLA. Using the FIRE-2 cosmological zoom simulations, we argue that these relatively large distances are due to a predominantly cool and neutral inner circumgalactic medium (CGM) surrounding high-redshift galaxies. The inner CGM is cool because of the short cooling time of hot gas in $${\lesssim}10^{12}\, {\rm M_{\odot }}$$ haloes, which implies that accretion and feedback energy are radiated quickly, while it is neutral due to high volume densities and column densities at high redshift that shield cool gas from photoionization. Our analysis predicts large DLA covering factors ($${\gtrsim}50{{\ \rm per\ cent}}$$) out to impact parameters ∼0.3[(1 + z)/5]3/2Rvir from the central galaxies at z ≳ 1, equivalent to a proper distance of $${\sim}21\, M_{12}^{1/3} \left(\left(1+z\right)/5\right)^{1/2}\, {\rm kpc}$$ (Rvir and M12 are the halo virial radius and mass in units of $$10^{12}\, {\rm M_{\odot }}$$, respectively). This implies that DLA covering factors at z ∼ 4 may be comparable to unity out to a distance ∼10 times larger than stellar half-mass radii. A predominantly neutral inner CGM in the early universe suggests that its mass and metallicity can be directly constrained by absorption surveys, without resorting to the large ionization corrections as required for ionized CGM. 
    more » « less
  4. ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $$\sim 10^{12}\, {\rm M_{\odot }}$$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of $${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $$\gtrsim {\dot{M}}_{\rm crit}$$ the volume-filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and free-falling near the galaxy. We compare $${\dot{M}}_{\rm crit}$$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that $${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $$\sim 10^{12}\, {\rm M_{\odot }}$$. 
    more » « less
  5. Galaxy cluster mergers are excellent laboratories for studying a wide variety of different physical phenomena. An example of such a cluster system is the distant SPT-CLJ2228-5828 merger located atz ≈ 0.77. Previous analyses via the thermal Sunyaev-Zeldovich effect and weak lensing (WL) data suggested that the system was potentially a dissociative cluster post-merger, similar to the Bullet cluster. In this work, we perform an X-ray and optical follow-up analysis of this rare system. We used new deepXMM-Newtondata to study the hot gas in X-rays in great detail, spectroscopicGeminidata to precisely determine the redshift of the two mass concentrations, and newHubbleSpace Telescope data to improve the total mass estimates of the two components. We find that SPT-CLJ2228-5828 constitutes a pre-merging double cluster system instead of a post-merger as previously thought. The merging process of the two clusters has started, with their gas on the outskirts colliding with a ∼22° −27° on the plane of the sky. Both clusters have a similar radius ofR500 ∼ 700 kpc, with the two X-ray emission peaks separated by ≈1 Mpc (2.1′). We fully characterized the surface brightness, gas density, temperature, pressure, and entropy profiles of the two merging clusters for their undisturbed non-interacting side. The two systems have very similar X-ray properties, with a moderate cluster mass ofMtot ∼ (2.1 − 2.4)×1014 Maccording to X-ray mass proxies. Both clusters show good agreement with known X-ray scaling relations when their merging side is ignored. The WL mass estimate of the western cluster agrees well with the X-ray-based mass, whereas the eastern cluster is surprisingly only marginally detected from its WL signal. A gas bridge with ≈333 kpc length connecting the two merging halos is detected at a 5.8σlevel. The baryon overdensity of the excess gas (not associated with the cluster gas) isδb ∼ (75 − 320) across the length of the bridge, and its gas mass isMgas ∼ 1.4 × 1012 M. The gas density and temperature jumps at ∼10−3cm−3and ∼5.5 keV, respectively, are also found across the gas bridge, revealing the existence of a weak shock front with a Mach number ℳ ∼ 1.1. The gas pressure and entropy also increase at the position of the shock front. We estimate the age of the shock front to be ≲100 Myr and its kinetic energy ∼2.4 × 1044erg s−1. SPT-CLJ2228-5828 is the first such high-zpre-merger with a gas bridge and a shock front, consisting of similarly sized clusters, to be studied in X-rays. 
    more » « less