skip to main content


Search for: All records

Award ID contains: 1852617

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Including millimeter-wave data in multiwavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence millimeter-wave AGN monitoring over large fractions of sky. We report on a pilot study using data from the SPTpol instrument on the South Pole Telescope (SPT), which was designed to observe the CMB at arcminute and larger angular scales. Between 2013 and 2016, SPTpol was used primarily to observe a single 500 deg2field, covering the entire field several times per day with detectors sensitive to radiation in bands centered at 95 and 150 GHz. We use SPT 150 GHz observations to create AGN light curves, and we compare these millimeter-wave light curves to those at other wavelengths, in particularγ-ray and optical. In this Letter, we focus on a single source, PKS 2326-502, which has extensive, day-timescale monitoring data in gamma-ray, optical, and now millimeter-wave between 2013 and 2016. We find PKS 2326-502 to be in a flaring state in the first 2 yr of this monitoring, and we present a search for evidence of correlated variability between millimeter-wave, opticalR-band, andγ-ray observations. This pilot study is paving the way for AGN monitoring with current and upcoming CMB experiments such as SPT-3G, Simons Observatory, and CMB-S4, including multiwavelength studies with facilities such as Vera C. Rubin Observatories Large Synoptic Survey Telescope.

     
    more » « less
  2. Abstract

    The Summertime Line Intensity Mapper (SLIM) is a mm-wave line-intensity mapping (mm-LIM) experiment for the South Pole Telescope (SPT). The goal of SPT-SLIM is to serve as a technical and scientific pathfinder for the demonstration of the suitability and in-field performance of multi-pixel superconducting filterbank spectrometers for future mm-LIM experiments. Scheduled to deploy in the 2023-24 austral summer, the SPT-SLIM focal plane will include 18 dual-polarisation pixels, each coupled to an$$R = \lambda / \Delta \lambda = 300$$R=λ/Δλ=300thin-film microstrip filterbank spectrometer that spans the 2 mm atmospheric window (120–180 GHz). Each individual spectral channel feeds a microstrip-coupled lumped-element kinetic inductance detector, which provides the highly multiplexed readout for the 10k detectors needed for SPT-SLIM. Here, we present an overview of the preliminary design of key aspects of the SPT-SLIM focal plane array, a description of the detector architecture and predicted performance, and initial test results that will be used to inform the final design of the SPT-SLIM spectrometer array.

     
    more » « less
  3. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less
  4. Abstract

    The SPT 0311–58 system atz= 6.900 is an extremely massive structure within the reionization epoch and offers a chance to understand the formation of galaxies at an extreme peak in the primordial density field. We present 70 mas Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [Cii] 158μm emission in the central pair of galaxies and reach physical resolutions of ∼100–350 pc, among the most detailed views of any reionization-era system to date. The observations resolve the source into at least a dozen kiloparsec-size clumps. The global kinematics and high turbulent velocity dispersion within the galaxies present a striking contrast to recent claims of dynamically cold thin-disk kinematics in some dusty galaxies just 800 Myr later atz∼ 4. We speculate that both gravitational interactions and fragmentation from massive parent disks have likely played a role in the overall dynamics and formation of clumps in the system. Each clump individually is comparable in mass to other 6 <z< 8 galaxies identified in rest-UV/optical deep field surveys, but with star formation rates elevated by a factor of ~3-5. Internally, the clumps themselves bear close resemblance to greatly scaled-up versions of virialized cloud-scale structures identified in low-redshift galaxies. Our observations are qualitatively similar to the chaotic and clumpy assembly within massive halos seen in simulations of high-redshift galaxies.

     
    more » « less
  5. Abstract

    With ΣSFR∼ 4200Myr−1kpc−2, SPT 0346–52 (z= 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii] 205μm, [Cii] 158μm, [Oi] 146μm, and undetected [Nii] 122μm and [Oi] 63μm emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudyand find a supersolar metallicity system. We calculateTdust= 48.3 K andλpeak= 80μm and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withne< 32 cm−3, while ∼20% of the [Cii] 158μm emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass.

     
    more » « less
  6. ABSTRACT

    We present updated cosmological constraints from measurements of the gas mass fractions (fgas) of massive, dynamically relaxed galaxy clusters. Our new data set has greater leverage on models of dark energy, thanks to the addition of the Perseus cluster at low redshifts, two new clusters at redshifts z ≳ 1, and significantly longer observations of four clusters at 0.6 < z < 0.9. Our low-redshift (z < 0.16) fgas data, combined with the cosmic baryon fraction measured from the cosmic microwave background (CMB), imply a Hubble constant of h = 0.722 ± 0.067. Combining the full fgas data set with priors on the cosmic baryon density and the Hubble constant, we constrain the dark energy density to be ΩΛ = 0.865 ± 0.119 in non-flat Lambda cold dark matter (cosmological constant) models, and its equation of state to be $w=-1.13_{-0.20}^{+0.17}$ in flat, constant-w models, respectively 41 per cent and 29 per cent tighter than our previous work, and comparable to the best constraints available from other probes. Combining fgas, CMB, supernova, and baryon acoustic oscillation data, we also constrain models with global curvature and evolving dark energy. For the massive, relaxed clusters employed here, we find the scaling of fgas with mass to be consistent with a constant, with an intrinsic scatter that corresponds to just ∼3 per cent in distance.

     
    more » « less
  7. ABSTRACT

    We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Compton-y maps from the 2500 deg2 SPT-SZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoom-in hydrodynamical simulations from the three hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = 4.58 ± 1.24 at 2.0σ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyse clusters from the Planck and Atacama Cosmology Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius ($R_{\rm sh,\, acc}$) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, $R_{\rm sh,\, acc}/R_{\rm sp}\gt 2.16 \pm 0.59$.

     
    more » « less
  8. Abstract

    We present the first measurements of asteroids in millimeter wavelength data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two ∼270 deg2sky regions near the ecliptic plane, each observed with the SPTpol camera ∼100 times over 1 month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids—(324) Bamberga, (13) Egeria, and (22) Kalliope—with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with an S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids’ effective emissivities, brightness temperatures, and light-curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of 0.64 ± 0.11 at 2.0 and < 0.47 at 3.2 mm. We predict the asteroids detectable in other SPT data sets and find good agreement with detections of (772) Tanete and (1093) Freda in recent data from the SPT-3G camera, which has ∼10× the mapping speed of SPTpol. This work is the first focused analysis of asteroids in data from CMB surveys, and it demonstrates we can repurpose historic and future data sets for asteroid studies. Future SPT measurements can help constrain the distribution of surface properties over a larger asteroid population.

     
    more » « less
  9. ABSTRACT

    The protocluster SPT2349−56 at $z = 4.3$ contains one of the most actively star-forming cores known, yet constraints on the total stellar mass of this system are highly uncertain. We have therefore carried out deep optical and infrared observations of this system, probing rest-frame ultraviolet to infrared wavelengths. Using the positions of the spectroscopically confirmed protocluster members, we identify counterparts and perform detailed source deblending, allowing us to fit spectral energy distributions in order to estimate stellar masses. We show that the galaxies in SPT2349−56 have stellar masses proportional to their high star formation rates, consistent with other protocluster galaxies and field submillimetre galaxies (SMGs) around redshift 4. The galaxies in SPT2349−56 have on average lower molecular gas-to-stellar mass fractions and depletion time-scales than field SMGs, although with considerable scatter. We construct the stellar-mass function for SPT2349−56 and compare it to the stellar-mass function of $z = 1$ galaxy clusters, finding consistent shapes between the two. We measure rest-frame galaxy ultraviolet half-light radii from our HST-F160W imaging, finding that on average the galaxies in our sample are similar in size to typical star-forming galaxies at these redshifts. However, the brightest HST-detected galaxy in our sample, found near the luminosity-weighted centre of the protocluster core, remains unresolved at this wavelength. Hydrodynamical simulations predict that the core galaxies will quickly merge into a brightest cluster galaxy, thus our observations provide a direct view of the early formation mechanisms of this class of object.

     
    more » « less
  10. Abstract

    We present component-separated maps of the primary cosmic microwave background/kinematic Sunyaev–Zel’dovich (SZ) amplitude and the thermal SZ Compton-yparameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the ∼2500 deg2of the southern sky imaged by the SPT-SZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution (1.′25for our highest-resolution Compton-ymaps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowest-noise Compton-ymap products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available athttp://pole.uchicago.edu/public/data/sptsz_ymapand on the NASA/LAMBDA website.

     
    more » « less