skip to main content


Title: Age-related differences in the temporal dynamics of spectral power during memory encoding
We examined oscillatory power in electroencephalographic recordings obtained while younger (18-30 years) and older (60+ years) adults studied lists of words for later recall. Power changed in a highly consistent way from word-to-word across the study period. Above 14 Hz, there were virtually no age differences in these neural gradients. But gradients below 14 Hz reliably discriminated between age groups. Older adults with the best memory performance showed the largest departures from the younger adult pattern of neural activity. These results suggest that age differences in the dynamics of neural activity across an encoding period reflect changes in cognitive processing that may compensate for age-related decline.  more » « less
Award ID(s):
1848972
NSF-PAR ID:
10166072
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PloS one
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explored neural processing differences associated with aging across four cognitive functions. In addition to ERP analysis, we included task-related microstate analyses, which identified stable states of neural activity across the scalp over time, to explore whole-head neural activation differences. Younger and older adults (YA, OA) completed face perception (N170), word-pair judgment (N400), visual oddball (P3), and flanker (ERN) tasks. Age-related effects differed across tasks. Despite age-related delayed latencies, N170 ERP and microstate analyses indicated no age-related differences in amplitudes or microstates. However, age-related condition differences were found for P3 and N00 amplitudes and scalp topographies: smaller condition differences were found for in OAs as well as broader centroparietal scalp distributions. Age group comparisons for the ERN revealed similar focal frontocentral activation loci, but differential activation patterns. Our findings of differential age effects across tasks are most consistent with the STAC-r framework which proposes that age-related effects differ depending on the resources available and the kinds of processing and cognitive load required of various tasks. 
    more » « less
  2. Successful memory performance depends on overlap between neural representations at encoding and retrieval. With older age, neural similarity, memory performance, and sleep quality decline. Regardless of age, racial/ethnic minorities tend to experience poor sleep, which may contribute to poor memory. Previous studies have not investigated memory performance, neural similarity, sleep quality, and age in diverse participants. Here, we recruited racially/ethnically diverse adults across the lifespan and examined night-to-night sleep quality in relation to memory performance and encoding-retrieval similarity. We employed item-specific, representational similarity analysis (not confounded by effort, word perception, or differences in electroencephalography signal amplitude) to assess neural similarity for intact and recombined paired associates. Greater sleep variance and poorer memory performance were more strongly associated with older age. Interestingly, sleep variance was positively associated with neural similarity for intact pairs. This relationship was stronger with younger age and for racial/ethnic minorities. For recombined pairs, greater sleep variance was associated with reduced neural similarity. Thus, varied sleep may induce greater reliance on familiarity, while consistent sleep may support recollection. 
    more » « less
  3. Abstract

    Many prosocial behaviors involve social risks such as speaking out against a popular opinion, bias, group norm, or authority. However, little is known about whether adolescents’ prosocial tendencies develop over time with their perceptions of social risks. This accelerated longitudinal study used within‐subject growth‐curve analyses to test the link between adolescents' prosocial tendencies and social risk perceptions. Adolescents completed self‐reports annually for 3 years (N= 893;Mage= 12.30 years, 10–14 years at Wave 1, and 10–17 years across the full study period; 50% girls, 33% White non‐Latinx, 27% Latinx, 20% African American, 20% mixed/other race). The association between social risk tolerance and prosocial tendencies changed significantly across adolescence. Specifically, for younger adolescents, more prosocial tendencies were associated significantly with less social risk tolerance, whereas for relatively older adolescents, more prosocial tendencies were associated marginally with more social risk tolerance. Additional individual differences by empathy (but not sensation seeking) emerged. These findings suggest that prosocial tendencies across adolescence may be associated with an underlying ability to tolerate social risks.

     
    more » « less
  4. How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts. 
    more » « less
  5. Abstract

    Listening to music is an enjoyable behaviour that engages multiple networks of brain regions. As such, the act of music listening may offer a way to interrogate network activity, and to examine the reconfigurations of brain networks that have been observed in healthy aging. The present study is an exploratory examination of brain network dynamics during music listening in healthy older and younger adults. Network measures were extracted and analyzed together with behavioural data using a combination of hidden Markov modelling and partial least squares. We found age- and preference-related differences in fMRI data collected during music listening in healthy younger and older adults. Both age groups showed higher occupancy (the proportion of time a network was active) in a temporal-mesolimbic network while listening to self-selected music. Activity in this network was strongly positively correlated with liking and familiarity ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher degree of correlation between liking and familiarity ratings consistent with past behavioural work on age-related dedifferentiation. We conclude that, while older adults do show network and behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network is relatively robust to dedifferentiation. These findings may help explain how music listening remains meaningful and rewarding in old age.

     
    more » « less