skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robustness for Non-Parametric Classification: A Generic Attack and Defense
Adversarially robust machine learning has re- ceived much recent attention. However, prior attacks and defenses for non-parametric clas- sifiers have been developed in an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non- parametric classifiers, including nearest neigh- bors, decision trees, and random forests. We provide a general defense method, adversar- ial pruning, that works by preprocessing the dataset to become well-separated. To test our defense, we provide a novel attack that applies to a wide range of non-parametric classifiers. Theoretically, we derive an optimally robust classifier, which is analogous to the Bayes Op- timal. We show that adversarial pruning can be viewed as a finite sample approximation to this optimal classifier. We empirically show that our defense and attack are either better than or competitive with prior work on non- parametric classifiers. Overall, our results pro- vide a strong and broadly-applicable baseline for future work on robust non-parametrics.  more » « less
Award ID(s):
1804829
PAR ID:
10166079
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
108
ISSN:
1533-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A growing body of research has shown that many classifiers are susceptible to adversarial exam- ples – small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are ro- bust to these modifications. We establish general conditions under which non-parametric methods are r-consistent – in the sense that they converge to optimally robust and accurate classifiers in the large sample limit. Concretely, our results show that when data is well-separated, nearest neighbors and kernel clas- sifiers are r-consistent, while histograms are not. For general data distributions, we prove that pre- processing by Adversarial Pruning (Yang et al., 2019) – that makes data well-separated – followed by nearest neighbors or kernel classifiers also leads to r-consistency. 
    more » « less
  2. Website Fingerprinting (WF) is a traffic analysis attack that enables an eavesdropper to infer the victim's web activity even when encrypted and even when using the Tor anonymity system. Using deep learning classifiers, the attack can reach up to 98% accuracy. Existing WF defenses are either too expensive in terms of bandwidth and latency overheads (e.g. 2-3 times as large or slow) or ineffective against the latest attacks. In this work, we explore a novel defense based on the idea of adversarial examples that have been shown to undermine machine learning classifiers in other domains. Our Adversarial Traces defense adds padding to a Tor traffic trace in a manner that reliably fools the classifier into classifying it as coming from a different site. The technique drops the accuracy of the state-of-the-art attack from 98% to 60%, while incurring a reasonable 47% bandwidth overhead, showing its promise as a possible defense for Tor. 
    more » « less
  3. Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool deep learning models by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. We further propose attack methods based on genetic algorithms and gradient descent in the scenario where additional prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers. 
    more » « less
  4. Neural models enjoy widespread use across a variety of tasks and have grown to become crucial components of many industrial systems. Despite their effectiveness and ex- tensive popularity, they are not without their exploitable flaws. Initially applied to computer vision systems, the generation of adversarial examples is a process in which seemingly imper- ceptible perturbations are made to an image, with the purpose of inducing a deep learning based classifier to misclassify the image. Due to recent trends in speech processing, this has become a noticeable issue in speech recognition models. In late 2017, an attack was shown to be quite effective against the Speech Commands classification model. Limited-vocabulary speech classifiers, such as the Speech Commands model, are used quite frequently in a variety of applications, particularly in managing automated attendants in telephony contexts. As such, adversarial examples produced by this attack could have real-world consequences. While previous work in defending against these adversarial examples has investigated using audio preprocessing to reduce or distort adversarial noise, this work explores the idea of flooding particular frequency bands of an audio signal with random noise in order to detect adversarial examples. This technique of flooding, which does not require retraining or modifying the model, is inspired by work done in computer vision and builds on the idea that speech classifiers are relatively robust to natural noise. A combined defense incorporating 5 different frequency bands for flooding the signal with noise outperformed other existing defenses in the audio space, detecting adversarial examples with 91.8% precision and 93.5% recall. 
    more » « less
  5. Learning classifiers that are robust to adversarial examples has received a great deal of recent attention. A major drawback of the standard robust learning framework is there is an artificial robustness radius r that applies to all inputs. This ignores the fact that data may be highly heterogeneous, in which case it is plausible that robustness regions should be larger in some regions of data, and smaller in others. In this paper, we address this limitation by proposing a new limit classifier, called the neighborhood optimal classifier, that extends the Bayes optimal classifier outside its support by using the label of the closest in-support point. We then argue that this classifier maximizes the size of its robustness regions subject to the constraint of having accuracy equal to the Bayes optimal. We then present sufficient conditions under which general non-parametric methods that can be represented as weight functions converge towards this limit, and show that both nearest neighbors and kernel classifiers satisfy them under certain condition 
    more » « less