Detecting overfitting in generative models is an important challenge in machine learning. In this work, we formalize a form of overfitting that we call data-copying – where the gener- ative model memorizes and outputs training samples or small variations thereof. We pro- vide a three sample non-parametric test for detecting data-copying that uses the training set, a separate sample from the target dis- tribution, and a generated sample from the model, and study the performance of our test on several canonical models and datasets.
more »
« less
A Three Sample Hypothesis Test for Evaluating Generative Models
Detecting overfitting in generative models is an important challenge in machine learning. In this work, we formalize a form of overfitting that we call data-copying – where the gener- ative model memorizes and outputs training samples or small variations thereof. We pro- vide a three sample test for detecting data- copying that uses the training set, a separate sample from the target distribution, and a generated sample from the model, and study the performance of our test on several canon- ical models and datasets.
more »
« less
- Award ID(s):
- 1617157
- PAR ID:
- 10166083
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 108
- ISSN:
- 1533-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called “data-copying” was proposed by Meehan et. al (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.more » « less
-
Evaluating generative adversarial networks (GANs) is inherently challenging. In this paper, we revisit several representative sample-based evaluation metrics for GANs, and address the problem of how to evaluate the evaluation metrics. We start with a few necessary conditions for metrics to produce meaningful scores, such as distinguishing real from generated samples, identifying mode dropping and mode collapsing, and detecting overfitting. With a series of carefully designed experiments, we comprehensively investigate existing sample-based metrics and identify their strengths and limitations in practical settings. Based on these results, we observe that kernel Maximum Mean Discrepancy (MMD) and the 1-Nearest- Neighbor (1-NN) two-sample test seem to satisfy most of the desirable properties, provided that the distances between samples are computed in a suitable feature space. Our experiments also unveil interesting properties about the behavior of several popular GAN models, such as whether they are memorizing training samples, and how far they are from learning the target distribution.more » « less
-
Continuing advances in neural interfaces have enabled simultaneous monitoring of spiking activity from hundreds to thousands of neurons. To interpret these large-scale data, several methods have been proposed to infer latent dynamic structure from high-dimensional datasets. One recent line of work uses recurrent neural networks in a sequential autoencoder (SAE) framework to uncover dynamics. SAEs are an appealing option for modeling nonlinear dynamical systems, and enable a precise link between neural activity and behavior on a single-trial basis. However, the very large parameter count and complexity of SAEs relative to other models has caused concern that SAEs may only perform well on very large training sets. We hypothesized that with a method to systematically optimize hyperparameters (HPs), SAEs might perform well even in cases of limited training data. Such a breakthrough would greatly extend their applicability. However, we find that SAEs applied to spiking neural data are prone to a particular form of overfitting that cannot be detected using standard validation metrics, which prevents standard HP searches. We develop and test two potential solutions: an alternate validation method (“sample validation”) and a novel regularization method (“coordinated dropout”). These innovations prevent overfitting quite effectively, and allow us to test whether SAEs can achieve good performance on limited data through large-scale HP optimization. When applied to data from motor cortex recorded while monkeys made reaches in various directions, large-scale HP optimization allowed SAEs to better maintain performance for small dataset sizes. Our results should greatly extend the applicability of SAEs in extracting latent dynamics from sparse, multidimensional data, such as neural population spiking activity.more » « less
-
In deep learning, often the training process nds an interpolator (a solution with 0 training loss), but the test loss is still low. This phenomenon, known as benign overfitting, is a major mystery that received a lot of recent attention. One common mechanism for benign overfitting is implicit regularization, where the training process leads to additional properties for the interpolator, often characterized by minimizing certain norms. However, even for a simple sparse linear regression problem y = Ax+ noise with sparse x , neither minimum l_1 orl_`2 norm interpolator gives the optimal test loss. In this work, we give a different parametrization of the model which leads to a new implicit regularization effect that combines the benefit of l_1 and l_2 interpolators. We show that training our new model via gradient descent leads to an interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics and provides another example of implicit regularization effect that goes beyond norm minimization.more » « less