skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1617157

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Detecting overfitting in generative models is an important challenge in machine learning. In this work, we formalize a form of overfitting that we call data-copying – where the gener- ative model memorizes and outputs training samples or small variations thereof. We pro- vide a three sample test for detecting data- copying that uses the training set, a separate sample from the target distribution, and a generated sample from the model, and study the performance of our test on several canon- ical models and datasets. 
    more » « less
  2. Normalizing flows have received a great deal of recent attention as they allow flexible gen- erative modeling as well as easy likelihood computation. While a wide variety of flow models have been proposed, there is little formal understanding of the representation power of these models. In this work, we study some basic normalizing flows and rigorously establish bounds on their expressive power. Our results indicate that while these flows are highly expressive in one dimension, in higher dimensions their representation power may be limited, especially when the flows have moderate depth. 
    more » « less