skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating Time-Varying Applied Current in the Hodgkin-Huxley Model
The classic Hodgkin-Huxley model is widely used for understanding the electrophysiological dynamics of a single neuron. While applying a low-amplitude constant current to the system results in a single voltage spike, it is possible to produce multiple voltage spikes by applying time-varying currents, which may not be experimentally measurable. The aim of this work is to estimate time-varying applied currents of different deterministic forms given noisy voltage data. In particular, we utilize an augmented ensemble Kalman filter with parameter tracking to estimate four different time-varying applied current parameters and associated Hodgkin-Huxley model states, along with uncertainty bounds in each case. We test the efficiency of the parameter tracking algorithm in this setting by analyzing the effects of changing the standard deviation of the parameter drift and the frequency of data available on the resulting time-varying applied current estimates and related uncertainty.  more » « less
Award ID(s):
1819203
PAR ID:
10166177
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
10
Issue:
2
ISSN:
2076-3417
Page Range / eLocation ID:
550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explores how uncertainty in time-varying parameter estimates obtained using nonlinear filtering algorithms with parameter tracking affects corresponding model output predictions. Results are demonstrated on a numerical example estimating the time-varying external voltage parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons. 
    more » « less
  2. Abstract Objective. Precise control of neural systems is essential to experimental investigations of how the brain controls behavior and holds the potential for therapeutic manipulations to correct aberrant network states. Model predictive control, which employs a dynamical model of the system to find optimal control inputs, has promise for dealing with the nonlinear dynamics, high levels of exogenous noise, and limited information about unmeasured states and parameters that are common in a wide range of neural systems. However, the challenge still remains of selecting the right model, constraining its parameters, and synchronizing to the neural system.Approach. As a proof of principle, we used recent advances in data-driven forecasting to construct a nonlinear machine-learning model of a Hodgkin–Huxley type neuron when only the membrane voltage is observable and there are an unknown number of intrinsic currents.Main Results. We show that this approach is able to learn the dynamics of different neuron types and can be used with model predictive control (MPC) to force the neuron to engage in arbitrary, researcher-defined spiking behaviors.Significance.To the best of our knowledge, this is the first application of nonlinear MPC of a conductance-based model where there is only realistically limited information about unobservable states and parameters. 
    more » « less
  3. This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin–Huxley circuit model is extracted by combining the Hodgkin–Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron’s electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems. 
    more » « less
  4. One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin–Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data. 
    more » « less
  5. The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type. 
    more » « less