skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 17, 2025

Title: Nonlinear model predictive control of a conductance-based neuron model via data-driven forecasting
Abstract Objective. Precise control of neural systems is essential to experimental investigations of how the brain controls behavior and holds the potential for therapeutic manipulations to correct aberrant network states. Model predictive control, which employs a dynamical model of the system to find optimal control inputs, has promise for dealing with the nonlinear dynamics, high levels of exogenous noise, and limited information about unmeasured states and parameters that are common in a wide range of neural systems. However, the challenge still remains of selecting the right model, constraining its parameters, and synchronizing to the neural system.Approach. As a proof of principle, we used recent advances in data-driven forecasting to construct a nonlinear machine-learning model of a Hodgkin–Huxley type neuron when only the membrane voltage is observable and there are an unknown number of intrinsic currents.Main Results. We show that this approach is able to learn the dynamics of different neuron types and can be used with model predictive control (MPC) to force the neuron to engage in arbitrary, researcher-defined spiking behaviors.Significance.To the best of our knowledge, this is the first application of nonlinear MPC of a conductance-based model where there is only realistically limited information about unobservable states and parameters.  more » « less
Award ID(s):
1942480
PAR ID:
10570479
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Neural Engineering
Date Published:
Journal Name:
Journal of Neural Engineering
Volume:
21
Issue:
5
ISSN:
1741-2560
Page Range / eLocation ID:
056014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Scenario‐based model predictive control (MPC) methods can mitigate the conservativeness inherent to open‐loop robust MPC. Yet, the scenarios are often generated offline based on worst‐case uncertainty descriptions obtaineda priori, which can in turn limit the improvements in the robust control performance. To this end, this paper presents a learning‐based, adaptive‐scenario‐tree model predictive control approach for uncertain nonlinear systems with time‐varying and/or hard‐to‐model dynamics. Bayesian neural networks (BNNs) are used to learn a state‐ and input‐dependent description of model uncertainty, namely the mismatch between a nominal (physics‐based or data‐driven) model of a system and its actual dynamics. We first present a new approach for training robust BNNs (RBNNs) using probabilistic Lipschitz bounds to provide a less conservative uncertainty quantification. Then, we present an approach to evaluate the credible intervals of RBNN predictions and determine the number of samples required for estimating the credible intervals given a credible level. The performance of RBNNs is evaluated with respect to that of standard BNNs and Gaussian process (GP) as a basis of comparison. The RBNN description of plant‐model mismatch with verified accurate credible intervals is employed to generate adaptive scenarios online for scenario‐based MPC (sMPC). The proposed sMPC approach with adaptive scenario tree can improve the robust control performance with respect to sMPC with a fixed, worst‐case scenario tree and with respect to an adaptive‐scenario‐based MPC (asMPC) using GP regression on a cold atmospheric plasma system. Furthermore, closed‐loop simulation results illustrate that robust model uncertainty learning via RBNNs can enhance the probability of constraint satisfaction of asMPC. 
    more » « less
  2. We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system’s safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods. 
    more » « less
  3. In isolated power systems with low rotational inertia, fast-frequency control strategies are required to maintain frequency stability. Furthermore, with limited resources in such isolated systems, the deployed control strategies have to provide the flexibility to handle operational constraints so the controller is optimal from a technical as well as an economical point-ofview. In this paper, a model predictive control (MPC) approach is proposed to maintain the frequency stability of these low inertia power systems, such as microgrids. Given a predictive model of the system, MPC computes control actions by recursively solving a finite-horizon, online optimization problem that satisfies peak power output and ramp-rate constraints. MATLAB/Simulink based simulations show the effectiveness of the controller to reduce frequency deviations and the rate-of-change-of-frequency (ROCOF) of the system. By proper selection of controller parameters, desired performance can be achieved while respecting the physical constraints on inverter peak power and/or ramp-rates. 
    more » « less
  4. Model predictive control (MPC) has become more relevant to vehicle dynamics control due to its inherent capacity of treating system constraints. However, online optimization from MPC introduces an extensive computational burden for today’s onboard microprocessors. To alleviate MPC computational load, several methods have been proposed. Among them, online successive system linearization and the resulting linear time-varying model predictive controller (LTVMPC) is one of the most popular options. Nevertheless, such online successive linearization commonly approximates the original (nonlinear) system by a linear one, which inevitably introduces extra modeling errors and therefore reduces MPC performance. Actually, if the controlled system possesses the “differential flatness” property, then it can be exactly linearized and an equivalent linear model will appear. This linear model maintains all the nonlinear features of the original system and can be utilized to design a flatness-based model predictive controller (FMPC). CarSim-Simulink joint simulations demonstrate that the proposed FMPC substantially outperforms a classical LTVMPC in terms of the path-tracking performance for autonomous vehicles. 
    more » « less
  5. The Current practice of air-fuel ratio control relies on empirical models and traditional PID controllers, which require extensive calibration to maintain the post-catalyst air-fuel ratio close to stoichiometry. In contrast, this work utilizes a physics-based Three-Way Catalyst (TWC) model to develop a model predictive control (MPC) strategy for air-fuel ratio control based on internal TWC oxygen storage dynamics. In this paper, parameters of the physics-based temperature and oxygen storage models of the TWC are identified using vehicle test data for a catalyst aged to 150,000 miles. A linearized oxygen storage model is then developed from the identified nonlinear model, which is shown via simulation to follow the nonlinear model with minimal error during nominal operation. This motivates the development of a Linear MPC (LMPC) framework using the linearized TWC oxygen storage model, reducing the requisite computational effort relative to a nonlinear MPC strategy. In this work, the LMPC utilizing a linearized physics-based TWC model is proven suitable for tracking a desired oxygen storage level by controlling the commanded engine air-fuel ratio, which is also a novel contribution. The offline simulation results show successful tracking performance of the developed LMPC framework. 
    more » « less