skip to main content


Title: Assessment of North American arthropod collections: prospects and challenges for addressing biodiversity research
Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a “vast hidden treasure trove” of biodiversity −95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation’s decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research.  more » « less
Award ID(s):
1759966 1811897
NSF-PAR ID:
10166242
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
7
ISSN:
2167-8359
Page Range / eLocation ID:
e8086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PLEASE CONTACT AUTHORS IF YOU CONTRIBUTE AND WOULD LIKE TO BE LISTED AS A CO-AUTHOR. (this message will be removed some time weeks/months after the first publication)

    Terrestrial Parasite Tracker indexed biotic interactions and review summary.

    The Terrestrial Parasite Tracker (TPT) project began in 2019 and is funded by the National Science foundation to mobilize data from vector and ectoparasite collections to data aggregators (e.g., iDigBio, GBIF) to help build a comprehensive picture of arthropod host-association evolution, distributions, and the ecological interactions of disease vectors which will assist scientists, educators, land managers, and policy makers. Arthropod parasites often are important to human and wildlife health and safety as vectors of pathogens, and it is critical to digitize these specimens so that they, and their biotic interaction data, will be available to help understand and predict the spread of human and wildlife disease.

    This data publication contains versioned TPT associated datasets and related data products that were tracked, reviewed and indexed by Global Biotic Interactions (GloBI) and associated tools. GloBI provides open access to finding species interaction data (e.g., predator-prey, pollinator-plant, pathogen-host, parasite-host) by combining existing open datasets using open source software.

    If you have questions or comments about this publication, please open an issue at https://github.com/ParasiteTracker/tpt-reporting or contact the authors by email.

    Funding:
    The creation of this archive was made possible by the National Science Foundation award "Collaborative Research: Digitization TCN: Digitizing collections to trace parasite-host associations and predict the spread of vector-borne disease," Award numbers DBI:1901932 and DBI:1901926

    References:
    Jorrit H. Poelen, James D. Simons and Chris J. Mungall. (2014). Global Biotic Interactions: An open infrastructure to share and analyze species-interaction datasets. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2014.08.005.

    GloBI Data Review Report

    Datasets under review:
     - University of Michigan Museum of Zoology Insect Division. Full Database Export 2020-11-20 provided by Erika Tucker and Barry Oconner. accessed via https://github.com/EMTuckerLabUMMZ/ummzi/archive/6731357a377e9c2748fc931faa2ff3dc0ce3ea7a.zip on 2022-06-24T14:02:48.801Z
     - Academy of Natural Sciences Entomology Collection for the Parasite Tracker Project accessed via https://github.com/globalbioticinteractions/ansp-para/archive/5e6592ad09ec89ba7958266ad71ec9d5d21d1a44.zip on 2022-06-24T14:04:22.091Z
     - Bernice Pauahi Bishop Museum, J. Linsley Gressitt Center for Research in Entomology accessed via https://github.com/globalbioticinteractions/bpbm-ent/archive/c085398dddd36f8a1169b9cf57de2a572229341b.zip on 2022-06-24T14:04:37.692Z
     - Texas A&M University, Biodiversity Teaching and Research Collections accessed via https://github.com/globalbioticinteractions/brtc-para/archive/f0a718145b05ed484c4d88947ff712d5f6395446.zip on 2022-06-24T14:06:40.154Z
     - Brigham Young University Arthropod Museum accessed via https://github.com/globalbioticinteractions/byu-byuc/archive/4a609ac6a9a03425e2720b6cdebca6438488f029.zip on 2022-06-24T14:06:51.420Z
     - California Academy of Sciences Entomology accessed via https://github.com/globalbioticinteractions/cas-ent/archive/562aea232ec74ab615f771239451e57b057dc7c0.zip on 2022-06-24T14:07:16.371Z
     - Clemson University Arthropod Collection accessed via https://github.com/globalbioticinteractions/cu-cuac/archive/6cdcbbaa4f7cec8e1eac705be3a999bc5259e00f.zip on 2022-06-24T14:07:40.925Z
     - Denver Museum of Nature and Science (DMNS) Parasite specimens (DMNS:Para) accessed via https://github.com/globalbioticinteractions/dmns-para/archive/a037beb816226eb8196533489ee5f98a6dfda452.zip on 2022-06-24T14:08:00.730Z
     - Field Museum of Natural History IPT accessed via https://github.com/globalbioticinteractions/fmnh/archive/6bfc1b7e46140e93f5561c4e837826204adb3c2f.zip on 2022-06-24T14:18:51.995Z
     - Illinois Natural History Survey Insect Collection accessed via https://github.com/globalbioticinteractions/inhs-insects/archive/38692496f590577074c7cecf8ea37f85d0594ae1.zip on 2022-06-24T14:19:37.563Z
     - UMSP / University of Minnesota / University of Minnesota Insect Collection accessed via https://github.com/globalbioticinteractions/min-umsp/archive/3f1b9d32f947dcb80b9aaab50523e097f0e8776e.zip on 2022-06-24T14:20:27.232Z
     - Milwaukee Public Museum Biological Collections Data Portal accessed via https://github.com/globalbioticinteractions/mpm/archive/9f44e99c49ec5aba3f8592cfced07c38d3223dcd.zip on 2022-06-24T14:20:46.185Z
     - Museum for Southern Biology (MSB) Parasite Collection accessed via https://github.com/globalbioticinteractions/msb-para/archive/178a0b7aa0a8e14b3fe953e770703fe331eadacc.zip on 2022-06-24T15:16:07.223Z
     - The Albert J. Cook Arthropod Research Collection accessed via https://github.com/globalbioticinteractions/msu-msuc/archive/38960906380443bd8108c9e44aeff4590d8d0b50.zip on 2022-06-24T16:09:40.702Z
     - Ohio State University Acarology Laboratory accessed via https://github.com/globalbioticinteractions/osal-ar/archive/876269d66a6a94175dbb6b9a604897f8032b93dd.zip on 2022-06-24T16:10:00.281Z
     - Frost Entomological Museum, Pennsylvania State University accessed via https://github.com/globalbioticinteractions/psuc-ento/archive/30b1f96619a6e9f10da18b42fb93ff22cc4f72e2.zip on 2022-06-24T16:10:07.741Z
     - Purdue Entomological Research Collection accessed via https://github.com/globalbioticinteractions/pu-perc/archive/e0909a7ca0a8df5effccb288ba64b28141e388ba.zip on 2022-06-24T16:10:26.654Z
     - Texas A&M University Insect Collection accessed via https://github.com/globalbioticinteractions/tamuic-ent/archive/f261a8c192021408da67c39626a4aac56e3bac41.zip on 2022-06-24T16:10:58.496Z
     - University of California Santa Barbara Invertebrate Zoology Collection accessed via https://github.com/globalbioticinteractions/ucsb-izc/archive/825678ad02df93f6d4469f9d8b7cc30151b9aa45.zip on 2022-06-24T16:12:29.854Z
     - University of Hawaii Insect Museum accessed via https://github.com/globalbioticinteractions/uhim/archive/53fa790309e48f25685e41ded78ce6a51bafde76.zip on 2022-06-24T16:12:41.408Z
     - University of New Hampshire Collection of Insects and other Arthropods UNHC-UNHC accessed via https://github.com/globalbioticinteractions/unhc/archive/f72575a72edda8a4e6126de79b4681b25593d434.zip on 2022-06-24T16:12:59.500Z
     - Scott L. Gardner and Gabor R. Racz (2021). University of Nebraska State Museum - Parasitology. Harold W. Manter Laboratory of Parasitology. University of Nebraska State Museum. accessed via https://github.com/globalbioticinteractions/unl-nsm/archive/6bcd8aec22e4309b7f4e8be1afe8191d391e73c6.zip on 2022-06-24T16:13:06.914Z
     - Data were obtained from specimens belonging to the United States National Museum of Natural History (USNM), Smithsonian Institution, Washington DC and digitized by the Walter Reed Biosystematics Unit (WRBU). accessed via https://github.com/globalbioticinteractions/usnmentflea/archive/ce5cb1ed2bbc13ee10062b6f75a158fd465ce9bb.zip on 2022-06-24T16:13:38.013Z
     - US National Museum of Natural History Ixodes Records accessed via https://github.com/globalbioticinteractions/usnm-ixodes/archive/c5fcd5f34ce412002783544afb628a33db7f47a6.zip on 2022-06-24T16:13:45.666Z
     - Price Institute of Parasite Research, School of Biological Sciences, University of Utah accessed via https://github.com/globalbioticinteractions/utah-piper/archive/43da8db550b5776c1e3d17803831c696fe9b8285.zip on 2022-06-24T16:13:54.724Z
     - University of Wisconsin Stevens Point, Stephen J. Taft Parasitological Collection accessed via https://github.com/globalbioticinteractions/uwsp-para/archive/f9d0d52cd671731c7f002325e84187979bca4a5b.zip on 2022-06-24T16:14:04.745Z
     - Giraldo-Calderón, G. I., Emrich, S. J., MacCallum, R. M., Maslen, G., Dialynas, E., Topalis, P., … Lawson, D. (2015). VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic acids research, 43(Database issue), D707–D713. doi:10.1093/nar/gku1117. accessed via https://github.com/globalbioticinteractions/vectorbase/archive/00d6285cd4e9f4edd18cb2778624ab31b34b23b8.zip on 2022-06-24T16:14:11.965Z
     - WIRC / University of Wisconsin Madison WIS-IH / Wisconsin Insect Research Collection accessed via https://github.com/globalbioticinteractions/wis-ih-wirc/archive/34162b86c0ade4b493471543231ae017cc84816e.zip on 2022-06-24T16:14:29.743Z
     - Yale University Peabody Museum Collections Data Portal accessed via https://github.com/globalbioticinteractions/yale-peabody/archive/43be869f17749d71d26fc820c8bd931d6149fe8e.zip on 2022-06-24T16:23:29.289Z

    Generated on:
    2022-06-24

    by:
    GloBI's Elton 0.12.4 
    (see https://github.com/globalbioticinteractions/elton).

    Note that all files ending with .tsv are files formatted 
    as UTF8 encoded tab-separated values files.

    https://www.iana.org/assignments/media-types/text/tab-separated-values


    Included in this review archive are:

    README:
      This file.

    review_summary.tsv:
      Summary across all reviewed collections of total number of distinct review comments.

    review_summary_by_collection.tsv:
      Summary by reviewed collection of total number of distinct review comments.

    indexed_interactions_by_collection.tsv: 
      Summary of number of indexed interaction records by institutionCode and collectionCode.

    review_comments.tsv.gz:
      All review comments by collection.

    indexed_interactions_full.tsv.gz:
      All indexed interactions for all reviewed collections.

    indexed_interactions_simple.tsv.gz:
      All indexed interactions for all reviewed collections selecting only sourceInstitutionCode, sourceCollectionCode, sourceCatalogNumber, sourceTaxonName, interactionTypeName and targetTaxonName.

    datasets_under_review.tsv:
      Details on the datasets under review.

    elton.jar: 
      Program used to update datasets and generate the review reports and associated indexed interactions.

    datasets.zip:
      Source datasets used by elton.jar in process of executing the generate_report.sh script.

    generate_report.sh:
      Program used to generate the report

    generate_report.log:
      Log file generated as part of running the generate_report.sh script
     

     
    more » « less
  2. Abstract Natural history collections (NHCs) are the foundation of historical baselines for assessing anthropogenic impacts on biodiversity. Along these lines, the online mobilization of specimens via digitization—the conversion of specimen data into accessible digital content—has greatly expanded the use of NHC collections across a diversity of disciplines. We broaden the current vision of digitization (Digitization 1.0)—whereby specimens are digitized within NHCs—to include new approaches that rely on digitized products rather than the physical specimen (Digitization 2.0). Digitization 2.0 builds on the data, workflows, and infrastructure produced by Digitization 1.0 to create digital-only workflows that facilitate digitization, curation, and data links, thus returning value to physical specimens by creating new layers of annotation, empowering a global community, and developing automated approaches to advance biodiversity discovery and conservation. These efforts will transform large-scale biodiversity assessments to address fundamental questions including those pertaining to critical issues of global change. 
    more » « less
  3. Native bee species in the United States provide invaluable pollination services. Concerns about native bee declines are growing, and there are calls for a national monitoring program. Documenting species ranges at ecologically meaningful scales through coverage completeness analysis is a fundamental step to track bees from species to communities. It may take decades before all existing bee specimens are digitized, so projections are needed now to focus future research and management efforts. From 1.923 million records, we created range maps for nearly 88% (3158 species) of bee species in the contiguous United States, provided the first analysis of inventory completeness for digitized specimens of a major insect clade, and perhaps most important, estimated spatial completeness accounting for all known bee specimens in USA collections, including undigitized bee specimens. Completeness analyses were very low (3–37%) across four examined spatial resolutions when using the currently available bee specimen records. Adding a subset of observations from community science data sources did not significantly increase completeness, and adding a projected 4.7 million undigitized specimens increased completeness by only an additional 12–13%. Assessments of data, including projected specimen records, indicate persistent taxonomic and geographic deficiencies. In conjunction with expedited digitization, new inventories that integrate community science data with specimen‐based documentation will be required to close these gaps. A combined effort involving both strategic inventories and accelerated digitization campaigns is needed for a more complete understanding of USA bee distributions. 
    more » « less
  4. International collaboration between collections, aggregators, and researchers within the biodiversity community and beyond is becoming increasingly important in our efforts to support biodiversity, conservation and the life of the planet. The social, technical, logistical and financial aspects of an equitable biodiversity data landscape – from workforce training and mobilization of linked specimen data, to data integration, use and publication – must be considered globally and within the context of a growing biodiversity crisis. In recent years, several initiatives have outlined paths forward that describe how digital versions of natural history specimens can be extended and linked with associated data. In the United States, Webster (2017) presented the “extended specimen”, which was expanded upon by Lendemer et al. (2019) through the work of the Biodiversity Collections Network (BCoN). At the same time, a “digital specimen” concept was developed by DiSSCo in Europe (Hardisty 2020). Both the extended and digital specimen concepts depict a digital proxy of an analog natural history specimen, whose digital nature provides greater capabilities such as being machine-processable, linkages with associated data, globally accessible information-rich biodiversity data, improved tracking, attribution and annotation, additional opportunities for data use and cross-disciplinary collaborations forming the basis for FAIR (Findable, Accessible, Interoperable, Reproducible) and equitable sharing of benefits worldwide, and innumerable other advantages, with slight variation in how an extended or digital specimen model would be executed. Recognizing the need to align the two closely-related concepts, and to provide a place for open discussion around various topics of the Digital Extended Specimen (DES; the current working name for the joined concepts), we initiated a virtual consultation on the discourse platform hosted by the Alliance for Biodiversity Knowledge through GBIF. This platform provided a forum for threaded discussions around topics related and relevant to the DES. The goals of the consultation align with the goals of the Alliance for Biodiversity Knowledge: expand participation in the process, build support for further collaboration, identify use cases, identify significant challenges and obstacles, and develop a comprehensive roadmap towards achieving the vision for a global specification for data integration. In early 2021, Phase 1 launched with five topics: Making FAIR data for specimens accessible; Extending, enriching and integrating data; Annotating specimens and other data; Data attribution; and Analyzing/mining specimen data for novel applications. This round of full discussion was productive and engaged dozens of contributors, with hundreds of posts and thousands of views. During Phase 1, several deeper, more technical, or additional topics of relevance were identified and formed the foundation for Phase 2 which began in May 2021 with the following topics: Robust access points and data infrastructure alignment; Persistent identifier (PID) scheme(s); Meeting legal/regulatory, ethical and sensitive data obligations; Workforce capacity development and inclusivity; Transactional mechanisms and provenance; and Partnerships to collaborate more effectively. In Phase 2 fruitful progress was made towards solutions to some of these complex functional and technical long-term goals. Simultaneously, our commitment to open participation was reinforced, through increased efforts to involve new voices from allied and complementary fields. Among a wealth of ideas expressed, the community highlighted the need for unambiguous persistent identifiers and a dedicated agent to assign them, support for a fully linked system that includes robust publishing mechanisms, strong support for social structures that build trustworthiness of the system, appropriate attribution of legacy and new work, a system that is inclusive, removed from colonial practices, and supportive of creative use of biodiversity data, building a truly global data infrastructure, balancing open access with legal obligations and ethical responsibilities, and the partnerships necessary for success. These two consultation periods, and the myriad activities surrounding the online discussion, produced a wide variety of perspectives, strategies, and approaches to converging the digital and extended specimen concepts, and progressing plans for the DES -- steps necessary to improve access to research-ready data to advance our understanding of the diversity and distribution of life. Discussions continue and we hope to include your contributions to the DES in future implementation plans. 
    more » « less
  5. Elmer Ottis Wooton (1865–1945) was one of the most important early botanists to work in the Southwestern United States, contributing a great deal of natural history knowledge and botanical research on the flora of New Mexico that shaped many naturalists and scientists for generations. The extensive Wooton legacy includes herbarium collections that he and his famous student Paul Carpenter Standley (1884–1963), prolific botanist and explorer, used for the first Flora of New Mexi co by Wooten and Standley 1915 , along with resources covering botany and range management strategies for the northern Chihuahuan Desert, and an extensive, yet to be digitized, historical archive of correspondence, field notes, vegetation sketches, photographs, and lantern slides, all from his travels and field work in the region. Starting in 1890, the most complete set of Wooton’s herbarium collections were deposited in the NMC herbarium at New Mexico State University (NMSU), and his archives, now stored in a Campus library, have together been underutilized, offline resources. The goals of this ongoing project are to secure, preserve, and promote Wooton’s important historical resources, by fleshing out the botanical history of the region, raising appreciation of herbarium collections within the community, and emphasizing their unique role in facilitating contemporary research aimed at addressing pressing scientific questions such as vegetation responses to global climate change. Students and the general public involved in this project are engaged through hands-on activities including cataloging, databasing and digitization of nearly 10,000 herbarium specimens and Wooton’s archives. These outputs, combined with contemporary data collection and computational biology techniques from an ecological perspective, are being used to document vegetation changes in iconic, climate-sensitive, high-elevation mountainous ecosystems present in southwestern New Mexico. In a later phase of the project, a variety of public audiences will participate through interactive online story maps and citizen science programs such as iNaturalist , Notes from Nature , and BioBlitz . Images of herbarium specimens will be shared via an online database and other relevant biodiversity portals ( Symbiota , iDigBio , JStor ) Community members reached through this project will be better-informed citizens, who may go on to become new stewards of natural history collections, with the potential to influence policies safeguarding the future of our planet’s biodiversity. More locally, the project will support the management of Organ Mountains Desert Peaks National Monument, which was established in 2014 to protect the area's human and environmental resources, and for which knowledge and data are currently limited. 
    more » « less