skip to main content

Title: The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations
ABSTRACT We have modelled the multicycle evolution of rapidly accreting CO white dwarfs (RAWDs) with stable H burning intermittent with strong He-shell flashes on their surfaces for 0.7 ≤ MRAWD/M⊙ ≤ 0.75 and [Fe/H] ranging from 0 to −2.6. We have also computed the i-process nucleosynthesis yields for these models. The i process occurs when convection driven by the He-shell flash ingests protons from the accreted H-rich surface layer, which results in maximum neutron densities Nn, max ≈ 1013–1015 cm−3. The H-ingestion rate and the convective boundary mixing (CBM) parameter ftop adopted in the one-dimensional nucleosynthesis and stellar evolution models are constrained through three-dimensional (3D) hydrodynamic simulations. The mass ingestion rate and, for the first time, the scaling laws for the CBM parameter ftop have been determined from 3D hydrodynamic simulations. We confirm our previous result that the high-metallicity RAWDs have a low mass retention efficiency ($\eta \lesssim 10{{\ \rm per\ cent}}$). A new result is that RAWDs with [Fe/H] $\lesssim -2$ have $\eta \gtrsim 20{{\ \rm per\ cent}}$; therefore, their masses may reach the Chandrasekhar limit and they may eventually explode as SNeIa. This result and the good fits of the i-process yields from the metal-poor RAWDs to the observed chemical more » composition of the CEMP-r/s stars suggest that some of the present-day CEMP-r/s stars could be former distant members of triple systems, orbiting close binary systems with RAWDs that may have later exploded as SNeIa. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
4258 to 4270
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present two mixing models for post-processing of 3D hydrodynamic simulations applied to convective–reactive i-process nucleosynthesis in a rapidly accreting white dwarf (RAWD) with [Fe/H] = −2.6, in which H is ingested into a convective He shell. A 1D advective two-stream model adopts physically motivated radial and horizontal mixing coefficients constrained by 3D hydrodynamic simulations. A simpler approach uses diffusion coefficients calculated from the same simulations. All 3D simulations include the energy feedback of the 12C(p, γ)13N reaction from the H entrainment. Global oscillations of shell H ingestion in two of the RAWD simulations cause bursts of entrainment of H and non-radial hydrodynamic feedback. With the same nuclear network as in the 3D simulations, the 1D advective two-stream model reproduces the rate and location of the H burning within the He shell closely matching the 3D simulation predictions, as well as qualitatively displaying the asymmetry of the XH profiles between the upstream and downstream. With a full i-process network the advective mixing model captures the difference in the n-capture nucleosynthesis in the upstream and downstream. For example, 89Kr and 90Kr with half-lives of $3.18\,\,\mathrm{\mathrm{min}}$ and $32.3\,\,\mathrm{\mathrm{s}}$ differ by a factor 2–10 in the two streams. In this particular applicationmore »the diffusion approach provides globally the same abundance distribution as the advective two-stream mixing model. The resulting i-process yields are in excellent agreement with observations of the exemplary CEMP-r/s star CS31062-050.« less
  2. null (Ed.)
    ABSTRACT The abundances of neutron (n)-capture elements in the carbon-enhanced metal-poor (CEMP)-r/s stars agree with predictions of intermediate n-density nucleosynthesis, at Nn ∼ 1013–1015 cm−3, in rapidly accreting white dwarfs (RAWDs). We have performed Monte Carlo simulations of this intermediate-process (i-process) nucleosynthesis to determine the impact of (n,γ) reaction rate uncertainties of 164 unstable isotopes, from 131I to 189Hf, on the predicted abundances of 18 elements from Ba to W. The impact study is based on two representative one-zone models with constant values of Nn = 3.16 × 1014 and 3.16 × 1013 cm−3 and on a multizone model based on a realistic stellar evolution simulation of He-shell convection entraining H in a RAWD model with [Fe/H] = −2.6. For each of the selected elements, we have identified up to two (n,γ) reactions having the strongest correlations between their rate variations constrained by Hauser–Feshbach computations and the predicted abundances, with the Pearson product–moment correlation coefficients |rP| > 0.15. We find that the discrepancies between the predicted and observed abundances of Ba and Pr in the CEMP-i star CS 31062−050 are significantly diminished if the rate of 137Cs(n,γ)138Cs is reduced and the rates of 141Ba(n,γ)142Ba or 141La(n,γ)142La increased. The uncertainties of temperature-dependent β-decay rates of the same unstable isotopes have amore »negligible effect on the predicted abundances. One-zone Monte Carlo simulations can be used instead of computationally time-consuming multizone Monte Carlo simulations in reaction rate uncertainty studies if they use comparable values of Nn. We discuss the key challenges that RAWD simulations of i process for CEMP-i stars meet by contrasting them with recently published low-Z asymptotic giant branch (AGB) i process.« less
  3. ABSTRACT Carbon enhanced metal poor (CEMP)-no stars, a subset of CEMP stars ($\rm [C/Fe]\ge 0.7$ and $\rm [Fe/H]\lesssim -1$) have been discovered in ultra-faint dwarf (UFD) galaxies, with $M_{\rm vir}\approx 10^8{\, \mathrm{ M}_\odot }$ and $M_{\ast }\approx 10^3-10^4{\, \mathrm{ M}_\odot }$ at z = 0, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop III) and second (Pop II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here, we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of $m_{\rm gas}\approx 60{\, \mathrm{ M}_\odot }$. We include enrichment from Pop III faint supernovae (SNe), with ESN = 0.6 × 1051 erg, to understand the origin of CEMP-no stars. We confirm that Pop III and Pop II stars are mainly responsible for the formation of CEMP and C-normal stars, respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop III SNe with normal explosion energy (ESN = 1.2 × 1051 erg) and Pop II enrichment, but faint SNe might also be neededmore »to produce CEMP-no stars with $\rm [C/Fe]\gtrsim 2$, corresponding to the absolute carbon abundance of $\rm A(C)\gtrsim 6.0$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $\rm [C/Fe]\approx 3-4$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $\rm A(C)\approx 7.0-7.5$, observed both in the MW halo and UFDs.« less
  4. ABSTRACT We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R ≈ 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to −2.0, 41 per cent have [Fe/H] ≤ −2.75 and only approximately seven per cent have [Fe/H] > −2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < −4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < −4), the stars observed spectroscopically are dominated by a ‘carbon-normal’ population with [C/Fe]1D, LTE ≤ +1 dex. Consideration of the A(C)1D, LTE versus [Fe/H]1D, LTE diagram suggests that the current selection process is strongly biased against stars with A(C)1D, LTE > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)1D, LTE < 7.3 and [C/Fe]1D,LTE > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function ofmore »the observed sample has a power-law slope of Δ(Log N)/Δ[Fe/H] = 1.5 ± 0.1 dex per dex for −4.0 ≤ [Fe/H] ≤ −2.75, but appears to drop abruptly at [Fe/H] ≈ −4.2, in line with previous studies.« less
  5. ABSTRACT The study of the origin of heavy elements is one of the main goals of nuclear astrophysics. In this paper, we present new observational data for the heavy r-process elements gadolinium (Gd, Z= 64), dysprosium (Dy, Z= 66), and thorium (Th, Z= 90) in a sample of 276 Galactic disc stars (–1.0 < [Fe/H] < + 0.3). The stellar spectra have a high resolution of 42 000 and 75 000, and the signal-to-noise ratio higher than 100. The LTE abundances of Gd, Dy, and Th have been determined by comparing the observed and synthetic spectra for three Gd lines (149 stars), four Dy lines (152 stars), and the Th line at 4019.13 Å (170 stars). For about 70 per cent of the stars in our sample, Gd and Dy are measured for the first time, and Th for 95 per cent of the stars. Typical errors vary from 0.07 to 0.16 dex. This paper provides the first extended set of Th observations in the Milky Way disc. Together with europium (Eu, Z= 63) data from our previous studies, we have compared these new observations with nucleosynthesis predictions and Galactic Chemical Evolution simulations. We confirm that [Gd/Fe] and [Dy/Fe] show the same behaviour of Eu. We study with GCE simulationsmore »the evolution of [Th/Fe] in comparison with [Eu/Fe], showing that unlike Eu, either the Th production is metallicity dependent in case of a unique source of the r-process in the Galaxy, or the frequency of the Th-rich r-process source is decreasing with the increase in [Fe/H].« less