ABSTRACT Several anomalous elemental abundance ratios have been observed in the metal-poor star HD94028. We assume that its high [As/Ge] ratio is a product of a weak intermediate (i) neutron-capture process. Given that observational errors are usually smaller than predicted nuclear physics uncertainties, we have first set-up a benchmark one-zone i-process nucleosynthesis simulation results of which provide the best fit to the observed abundances. We have then performed Monte Carlo simulations in which 113 relevant (n,γ) reaction rates of unstable species were randomly varied within Hauser–Feshbach model uncertainty ranges for each reaction to estimate the impact on the predicted stellar abundances. One of the interesting results of these simulations is a double-peaked distribution of the As abundance, which is caused by the variation of the 75Ga (n,γ) cross-section. This variation strongly anticorrelates with the predicted As abundance, confirming the necessity for improved theoretical or experimental bounds on this cross-section. The 66Ni (n,γ) reaction is found to behave as a major bottleneck for the i-process nucleosynthesis. Our analysis finds the Pearson product–moment correlation coefficient rP > 0.2 for all of the i-process elements with 32 ≤ Z ≤ 42, with significant changes in their predicted abundances showing up when the rate of this reaction is reduced to its theoretically constrained lower bound. Our results are applicable to any other stellar nucleosynthesis site with the similar i-process conditions, such as Sakurai’s object (V4334 Sagittarii) or rapidly accreting white dwarfs.
more »
« less
The impact of (n,γ) reaction rate uncertainties of unstable isotopes on the i -process nucleosynthesis of the elements from Ba to W
ABSTRACT The abundances of neutron (n)-capture elements in the carbon-enhanced metal-poor (CEMP)-r/s stars agree with predictions of intermediate n-density nucleosynthesis, at Nn ∼ 1013–1015 cm−3, in rapidly accreting white dwarfs (RAWDs). We have performed Monte Carlo simulations of this intermediate-process (i-process) nucleosynthesis to determine the impact of (n,γ) reaction rate uncertainties of 164 unstable isotopes, from 131I to 189Hf, on the predicted abundances of 18 elements from Ba to W. The impact study is based on two representative one-zone models with constant values of Nn = 3.16 × 1014 and 3.16 × 1013 cm−3 and on a multizone model based on a realistic stellar evolution simulation of He-shell convection entraining H in a RAWD model with [Fe/H] = −2.6. For each of the selected elements, we have identified up to two (n,γ) reactions having the strongest correlations between their rate variations constrained by Hauser–Feshbach computations and the predicted abundances, with the Pearson product–moment correlation coefficients |rP| > 0.15. We find that the discrepancies between the predicted and observed abundances of Ba and Pr in the CEMP-i star CS 31062−050 are significantly diminished if the rate of 137Cs(n,γ)138Cs is reduced and the rates of 141Ba(n,γ)142Ba or 141La(n,γ)142La increased. The uncertainties of temperature-dependent β-decay rates of the same unstable isotopes have a negligible effect on the predicted abundances. One-zone Monte Carlo simulations can be used instead of computationally time-consuming multizone Monte Carlo simulations in reaction rate uncertainty studies if they use comparable values of Nn. We discuss the key challenges that RAWD simulations of i process for CEMP-i stars meet by contrasting them with recently published low-Z asymptotic giant branch (AGB) i process.
more »
« less
- PAR ID:
- 10296881
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 503
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3913 to 3925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We have modelled the multicycle evolution of rapidly accreting CO white dwarfs (RAWDs) with stable H burning intermittent with strong He-shell flashes on their surfaces for 0.7 ≤ MRAWD/M⊙ ≤ 0.75 and [Fe/H] ranging from 0 to −2.6. We have also computed the i-process nucleosynthesis yields for these models. The i process occurs when convection driven by the He-shell flash ingests protons from the accreted H-rich surface layer, which results in maximum neutron densities Nn, max ≈ 1013–1015 cm−3. The H-ingestion rate and the convective boundary mixing (CBM) parameter ftop adopted in the one-dimensional nucleosynthesis and stellar evolution models are constrained through three-dimensional (3D) hydrodynamic simulations. The mass ingestion rate and, for the first time, the scaling laws for the CBM parameter ftop have been determined from 3D hydrodynamic simulations. We confirm our previous result that the high-metallicity RAWDs have a low mass retention efficiency ($$\eta \lesssim 10{{\ \rm per\ cent}}$$). A new result is that RAWDs with [Fe/H] $$\lesssim -2$$ have $$\eta \gtrsim 20{{\ \rm per\ cent}}$$; therefore, their masses may reach the Chandrasekhar limit and they may eventually explode as SNeIa. This result and the good fits of the i-process yields from the metal-poor RAWDs to the observed chemical composition of the CEMP-r/s stars suggest that some of the present-day CEMP-r/s stars could be former distant members of triple systems, orbiting close binary systems with RAWDs that may have later exploded as SNeIa.more » « less
-
Abstract Presolar grains are stardust particles that condensed in the ejecta or in the outflows of dying stars and can today be extracted from meteorites. They recorded the nucleosynthetic fingerprint of their parent stars and thus serve as valuable probes of these astrophysical sites. The most common types of presolar silicon carbide grains (called mainstream SiC grains) condensed in the outflows of asymptotic giant branch stars. Their measured silicon isotopic abundances are not significantly influenced by nucleosynthesis within the parent star but rather represent the pristine stellar composition. Silicon isotopes can thus be used as a proxy for galactic chemical evolution (GCE). However, the measured correlation of29Si/28Si versus30Si/28Si does not agree with any current chemical evolution model. Here, we use a Monte Carlo model to vary nuclear reaction rates within their theoretical or experimental uncertainties and process them through stellar nucleosynthesis and GCE models to study the variation of silicon isotope abundances based on these nuclear reaction rate uncertainties. We find that these uncertainties can indeed be responsible for the discrepancy between measurements and models and that the slope of the silicon isotope correlation line measured in mainstream SiC grains agrees with chemical evolution models within the nuclear reaction rate uncertainties. Our result highlights the importance of future precision reaction rate measurements for resolving the apparent data–model discrepancy.more » « less
-
Context. Barium (Ba) stars are characterised by an abundance of heavy elements made by the slow neutron capture process ( s -process). This peculiar observed signature is due to the mass transfer from a stellar companion, bound in a binary stellar system, to the Ba star observed today. The signature is created when the stellar companion is an asymptotic giant branch (AGB) star. Aims. We aim to analyse the abundance pattern of 169 Ba stars using machine learning techniques and the AGB final surface abundances predicted by the F RUITY and Monash stellar models. Methods. We developed machine learning algorithms that use the abundance pattern of Ba stars as input to classify the initial mass and metallicity of each Ba star’s companion star using stellar model predictions. We used two algorithms. The first exploits neural networks to recognise patterns, and the second is a nearest-neighbour algorithm that focuses on finding the AGB model that predicts the final surface abundances closest to the observed Ba star values. In the second algorithm, we included the error bars and observational uncertainties in order to find the best-fit model. The classification process was based on the abundances of Fe, Rb, Sr, Zr, Ru, Nd, Ce, Sm, and Eu. We selected these elements by systematically removing s -process elements from our AGB model abundance distributions and identifying the elements whose removal had the biggest positive effect on the classification. We excluded Nb, Y, Mo, and La. Our final classification combined the output of both algorithms to identify an initial mass and metallicity range for each Ba star companion. Results. With our analysis tools, we identified the main properties for 166 of the 169 Ba stars in the stellar sample. The classifications based on both stellar sets of AGB final abundances show similar distributions, with an average initial mass of M = 2.23 M ⊙ and 2.34 M ⊙ and an average [Fe/H] = −0.21 and −0.11, respectively. We investigated why the removal of Nb, Y, Mo, and La improves our classification and identified 43 stars for which the exclusion had the biggest effect. We found that these stars have statistically significant and different abundances for these elements compared to the other Ba stars in our sample. We discuss the possible reasons for these differences in the abundance patterns.more » « less
-
Context.Carbon-enhanced metal-poor (CEMP) stars ([C/Fe] > 0.7) are known to exist in large numbers at low metallicity in the Milky Way halo and are important tracers of early Galactic chemical evolution. However, very few stars of this kind have been identified in the classical dwarf spheroidal (dSph) galaxies, and detailed abundances, including neutron-capture element abundances, have only been reported for 13 stars. Aims.We aim to derive detailed abundances of six CEMP stars identified in the Carina dSph and compare the abundances to CEMP stars in other dSph galaxies and the Milky Way halo. This is the largest sample of CEMP stars in a dSph galaxy analysed to date. Methods.One-dimensional local thermodynamic equilibrium (LTE) elemental abundances are derived via equivalent width and spectral synthesis using high-resolution spectra of the six stars obtained with the MIKE spectrograph at Las Campanas Observatory. Results.We derived abundances or upper limits for up to 27 elements from C to Os in the six stars. Our analysis reveals one of the stars to be a CEMP-no star with very low neutron-capture element abundances. In contrast, the other five stars all show enhancements in neutron-capture elements in addition to their carbon enhancement, classifying them as CEMP-sand -r/sstars. The six stars have similarαand iron-peak element abundances to other stars in Carina, except for the CEMP-no star, which shows enhancement in Na, Mg, and Si. We explored the absolute carbon abundances (A(C)) of CEMP stars in dSph galaxies and find similar behaviour to that seen for Milky Way halo CEMP stars, but highlight that CEMP-r/sstars primarily have very highA(C) values. We also compared the neutron-capture element abundances of the CEMP-r/sstars in our sample to recenti-process yields, which provide a good match to the derived abundances.more » « less
An official website of the United States government

