skip to main content

Title: Energy-Efficient Processing and Robust Wireless Cooperative Transmission for Edge Inference
Edge machine learning can deliver low-latency and private artificial intelligent (AI) services for mobile devices by leveraging computation and storage resources at the network edge. This paper presents an energy-efficient edge processing framework to execute deep learning inference tasks at the edge computing nodes whose wireless connections to mobile devices are prone to channel uncertainties. Aimed at minimizing the sum of computation and transmission power consumption with probabilistic quality-of-service (QoS) constraints, we formulate a joint inference tasking and downlink beamforming problem that is characterized by a group sparse objective function. We provide a statistical learning based robust optimization approach to approximate the highly intractable probabilistic-QoS constraints by nonconvex quadratic constraints, which are further reformulated as matrix inequalities with a rank-one constraint via matrix lifting. We design a reweighted power minimization approach by iteratively reweighted ℓ1 minimization with difference-of-convex-functions (DC) regularization and updating weights, where the reweighted approach is adopted for enhancing group sparsity whereas the DC regularization is designed for inducing rank-one solutions. Numerical results demonstrate that the proposed approach outperforms other state-of-the-art approaches.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE Internet of Things Journal
Page Range or eLocation-ID:
1 to 1
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including factorization methods. Factorization methods approximate the weight matrix of a DNN layer with the multiplication of two or multiple low-rank matrices. However, it is hard to measure the ranks of DNN layers during the training process. Previous works mainly induce low-rank through implicit approximations or via costly singular value decomposition (SVD) process on every training step. The former approach usually induces a high accuracymore »loss while the latter has a low efficiency. In this work, we propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step. SVD training first decomposes each layer into the form of its full-rank SVD, then performs training directly on the decomposed weights. We add orthogonality regularization to the singular vectors, which ensure the valid form of SVD and avoid gradient vanishing/exploding. Low-rank is encouraged by applying sparsity-inducing regularizers on the singular values of each layer. Singular value pruning is applied at the end to explicitly reach a low-rank model. We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy, comparing to not only previous factorization methods but also state-of-the-art filter pruning methods.« less
  2. Recent breakthroughs in deep learning (DL) have led to the emergence of many intelligent mobile applications and services, but in the meanwhile also pose unprecedented computing challenges on resource-constrained mobile devices. This paper builds a collaborative deep inference system between a resource-constrained mobile device and a powerful edge server, aiming at joining the power of both on-device processing and computation offloading. The basic idea of this system is to partition a deep neural network (DNN) into a front-end part running on the mobile device and a back-end part running on the edge server, with the key challenge being how tomore »locate the optimal partition point to minimize the end-to-end inference delay. Unlike existing efforts on DNN partitioning that rely heavily on a dedicated offline profiling stage to search for the optimal partition point, our system has a built-in online learning module, called Autodidactic Neurosurgeon (ANS), to automatically learn the optimal partition point on-the-fly. Therefore, ANS is able to closely follow the changes of the system environment by generating new knowledge for adaptive decision making. The core of ANS is a novel contextual bandit learning algorithm, called μLinUCB, which not only has provable theoretical learning performance guarantee but also is ultra-lightweight for easy real-world implementation. We implement our system on a video stream object detection testbed to validate the design of ANS and evaluate its performance. The experiments show that ANS significantly outperforms state-of-the-art benchmarks in terms of tracking system changes and reducing the end-to-end inference delay.« less
  3. There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped withmore »both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimental results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance.« less
  4. We consider a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data. The unreliable nature of wireless connectivity, together with constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Thus motivated, we propose SGD-based bandlimited coordinate descent algorithms for such settings. Specifically, for the wireless edge employing over-the-air computing, a common subset of k-coordinates of the gradient updates across edge devicesmore »are selected by the receiver in each iteration, and then transmitted simultaneously over k sub-carriers, each experiencing time-varying channel conditions. We characterize the impact of communication error and compression, in terms of the resulting gradient bias and mean squared error, on the convergence of the proposed algorithms. We then study learning-driven communication error minimization via joint optimization of power allocation and learning rates. Our findings reveal that optimal power allocation across different sub-carriers should take into account both the gradient values and channel conditions, thus generalizing the widely used water-filling policy. We also develop sub-optimal distributed solutions amenable to implementation.« less
  5. Jaeger, Manfred ; Nielsen, Thomas Dyhre (Ed.)
    Almost all of the work in graphical models for game theory has mirrored previous work in probabilistic graphical models. Our work considers the opposite direction: Taking advantage of advances in equilibrium computation for probabilistic inference. In particular, we present formulations of inference problems in Markov random fields (MRFs) as computation of equilibria in a certain class of game-theoretic graphical models. While some previous work explores this direction, we still lack a more precise connection between variational probabilistic inference in MRFs and correlated equilibria. This paper sharpens the connection, which helps us exploit relatively more recent theoretical and empirical results frommore »the literature on algorithmic and computational game theory on the tractable, polynomial-time computation of exact or approximate correlated equilibria in graphical games with arbitrary, loopy graph structure. Our work discusses how to design new algorithms with equally tractable guarantees for the computation of approximate variational inference in MRFs. In addition, inspired by a previously stated game-theoretic view of tree-reweighted message-passing techniques for belief inference as a zero-sum game, we propose a different, general-sum potential game to design approximate fictitious-play techniques. Empirical evaluations on synthetic experiments and on an application to soft de-noising on real-world image datasets illustrate the performance of our proposed approach and shed some light on the conditions under which the resulting belief inference algorithms may be most effective relative to standard state-of-the-art methods.« less