skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compact setup for SIMO measurements of slab interconnects and correlation with PEDOT:PSS nanostructure morphology
We demonstrate a compact, portable and reliable, poor-man’s 8-channel interconnect and measure, in the 50- 100 MHz VHF radiofrequency range, the path-dependent voltage transfer function across drop-cast poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The setup may be inexpensively deployed for single-input-multiple-output (SIMO) self-sensing materials with computational impedance tomography algorithms. We test our setup with PEDOT:PSS samples that are dried in a static magnetic field. These samples exhibit anisotropic electrical conductivities and nanostructure morphologies. Voltages across the sample vary 2dB as a result of this anisotropy. This processing-dependent anisotropy of PEDOT:PSS may be useful in future efforts aimed at deconvolving the path-dependent electrical tomography measurements, as necessary for such a sensing system.  more » « less
Award ID(s):
1921034
PAR ID:
10166398
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Micro- and Nanotechnology Sensors, Systems, and Applications
Volume:
11389
Issue:
XII
Page Range / eLocation ID:
113892X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Conductive and transparent coatings consisting of silver nanowires (AgNWs) are promising candidates for emerging flexible electronics applications. Coatings of aligned AgNWs offer unusual electronic and optical anisotropies, with potential for use in micro-circuits, antennas, and polarization sensors. Here we explore a microfluidics setup and flow-induced alignment mechanisms to create centimeter-scale highly conductive coatings of aligned AgNWs with order parameters reaching 0.84, leading to large electrical and optical anisotropies. By varying flow rates, we establish the relationship between the shear rate and the alignment and investigate possible alignment mechanisms. The angle-dependent sheet resistance of the aligned AgNW networks exhibits an electronic transport anisotropy of ∼10× while maintaining low resistivity (<50 Ω sq −1 ) in all directions. When illuminated, the aligned AgNW coatings exhibit angle- and polarization-dependent colors, and the polarized reflection anisotropy can be as large as 25. This large optical anisotropy is due to a combination of alignment, polarization response, and angle-dependent scattering of the aligned AgNWs. 
    more » « less
  2. Abstract Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising material because of its favorable electrical and mechanical properties, stability in ambient environments, and biocompatibility. It finds broad application in energy storage, flexible electronics, and bioelectronics. Additive manufacturing opens a plethora of new avenues to form and shape PEDOT:PSS, allowing for the rapid construction of customized geometries. However, there are difficulties in printing PEDOT:PSS while maintaining its attractive properties. A 3D printing method for PEDOT:PSS using a room‐temperature coagulation bath‐based direct ink writing technique is reported. This technique enables fabrication of PEDOT:PSS into parts that are of high resolution and high conductivity, while maintaining stable electrochemical properties. The coagulation bath can be further modified to improve the mechanical properties of the resultant printed part via a one‐step reaction. Furthermore, it is demonstrated that a simple post‐processing step allows the printed electrodes to strongly adhere to several substrates under aqueous conditions, broadening their use in bioelectronics. Employing 3D printing of PEDOT:PSS, a cortex‐wide neural interface is fabricated, and intracranial electrical stimulation and simultaneous optical monitoring of mice brain activity with wide field calcium imaging are demonstrated. This reported 3D‐printing technique eliminates the need for cumbersome experimental setups while offering desired material properties. 
    more » « less
  3. Assembling transmembrane proteins on organic electronic materials is one promising approach to couple biological functions to electrical readouts. A biosensing device produced in such a way would enable both the monitoring and regulation of physiological processes and the development of new analytical tools to identify drug targets and new protein functionalities. While transmembrane proteins can be interfaced with bioelectronics through supported lipid bilayers (SLBs), incorporating functional and oriented transmembrane proteins into these structures remains challenging. Here, we demonstrate that cell-free expression systems allow for the one-step integration of an ion channel into SLBs assembled on an organic conducting polymer, poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). Using the large conductance mechanosensitive channel (MscL) as a model ion channel, we demonstrate that MscL adopts the correct orientation, remains mobile in the SLB, and is active on the polyelectrolyte surface using optical and electrical readouts. This work serves as an important illustration of a rapidly assembled bioelectronic platform with a diverse array of downstream applications, including electrochemical sensing, physiological regulation, and screening of transmembrane protein modulators. 
    more » « less
  4. Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts. 
    more » « less
  5. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has emerged as a promising conductive polymer for constructing efficient hole-transport layers (HTLs) in perovskite solar cells (PSCs). However, conventional fabrication methods, such as spin coating, spray coating, and slot-die coating, have resulted in PEDOT:PSS nanofilms with limited performance, characterized by a low density and non-uniform nanostructures. We introduce a novel 3D-printing approach called electrically assisted direct ink deposition with ultrasonic vibrations (EF-DID-UV) to overcome these challenges. This innovative printing method combines programmable acoustic field modulation with electrohydrodynamic spraying, providing a powerful tool for controlling the PEDOT:PSS nanofilm’s morphology precisely. The experimental findings indicate that when PEDOT:PSS nanofilms are crafted using horizontal ultrasonic vibrations, they demonstrate a uniform dispersion of PEDOT:PSS nanoparticles, setting them apart from instances involving vertical ultrasonic vibrations, both prior to and after the printing process. In particular, when horizontal ultrasonic vibrations are applied at a low amplitude (0.15 A) during printing, these nanofilms showcase exceptional wettability performance, with a contact angle of 16.24°, and impressive electrical conductivity of 2092 Ω/square. Given its ability to yield high-performance PEDOT:PSS nanofilms with precisely controlled nanostructures, this approach holds great promise for a wide range of nanotechnological applications, including the production of solar cells, wearable sensors, and actuators. 
    more » « less