skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sagnac interferometry for high-sensitivity optical measurements of spin-orbit torque
Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts.  more » « less
Award ID(s):
2104268 1719875
PAR ID:
10470817
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
36
ISSN:
2375-2548
Page Range / eLocation ID:
eadi9039
Subject(s) / Keyword(s):
Sagnac interferometry spin-orbit torque
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We adapt Sagnac interferometry for magneto-optic Kerr effect measurements of spin-orbit-torque-induced magnetic tilting in thin-film magnetic samples. The high sensitivity of Sagnac interferometry permits for the first time optical quantification of spin-orbit torque from small-angle magnetic tilting of samples with perpendicular magnetic anisotropy (PMA). We find significant disagreement between Sagnac measurements and simultaneously-performed harmonic Hall (HH) measurements of spin-orbit torque on Pt/Co/MgO and Pd/Co/MgO samples with PMA. The Sagnac results for PMA samples are consistent with both HH and Sagnac measurements for the in-plane geometry, so we conclude that the conventional analysis framework for PMA HH measurements is flawed. We suggest that the explanation for this discrepancy is that although magnetic-field induced magnetic tilting in PMA samples can produce a strong planar Hall effect, when tilting is instead generated by spin-orbit torque it produces negligible change in the planar Hall signal. This very surprising result demonstrates an error in the most-popular method for measuring spin-orbit torques in PMA samples, and represents an unsolved puzzle in understanding the planar Hall effect in magnetic thin films. 
    more » « less
  2. In ferromagnetic systems lacking inversion symmetry, an applied electric field can control the ferromagnetic order parameters through the spin-orbit torque. The prototypical example is a bilayer heterostructure composed of a ferromagnet and a heavy metal that acts as a spin current source. In addition to such bilayers, spin-orbit coupling can mediate spin-orbit torques in ferromagnets that lack bulk inversion symmetry. A recently discovered example is the two-dimensional monolayer ferromagnet Fe3GeTe2. In this paper, we use first-principles calculations to study the spin-orbit torque and ensuing magnetic dynamics in this material. By expanding the torque versus magnetization direction as a series of vector spherical harmonics, we find that higher order terms (up to ℓ=4) are significant and play important roles in the magnetic dynamics. They give rise to deterministic, magnetic field-free electrical switching of perpendicular magnetization. 
    more » « less
  3. The discovery of atomic monolayer magnetic materials has stimulated intense research activities in the two-dimensional (2D) van der Waals (vdW) materials community. The field is growing rapidly and there has been a large class of 2D vdW magnetic compounds with unique properties, which provides an ideal platform to study magnetism in the atomically thin limit. In parallel, based on tunneling magnetoresistance and magneto-optical effect in 2D vdW magnets and their heterostructures, emerging concepts of spintronic and optoelectronic applications such as spin tunnel field-effect transistors and spin-filtering devices are explored. While the magnetic ground state has been extensively investigated, reliable characterization and control of spin dynamics play a crucial role in designing ultrafast spintronic devices. Ferromagnetic resonance (FMR) allows direct measurements of magnetic excitations, which provides insight into the key parameters of magnetic properties such as exchange interaction, magnetic anisotropy, gyromagnetic ratio, spin-orbit coupling, damping rate, and domain structure. In this review article, we present an overview of the essential progress in probing spin dynamics of 2D vdW magnets using FMR techniques. Given the dynamic nature of this field, we focus mainly on broadband FMR, optical FMR, and spin-torque FMR, and their applications in studying prototypical 2D vdW magnets. We conclude with the recent advances in laboratory- and synchrotron-based FMR techniques and their opportunities to broaden the horizon of research pathways into atomically thin magnets. 
    more » « less
  4. This article examines recent advances in the field of antiferromagnetic spintronics from the perspective of potential device realization and applications. We discuss advances in the electrical control of antiferromagnetic order by current-induced spin–orbit torques, particularly in antiferromagnetic thin films interfaced with heavy metals. We also review possible scenarios for using voltage-controlled magnetic anisotropy as a more efficient mechanism to control antiferromagnetic order in thin films with perpendicular magnetic anisotropy. Next, we discuss the problem of electrical detection (i.e., readout) of antiferromagnetic order and highlight recent experimental advances in realizing anomalous Hall and tunneling magnetoresistance effects in thin films and tunnel junctions, respectively, which are based on noncollinear antiferromagnets. Understanding the domain structure and dynamics of antiferromagnetic materials is essential for engineering their properties for applications. For this reason, we then provide an overview of imaging techniques as well as micromagnetic simulation approaches for antiferromagnets. Finally, we present a perspective on potential applications of antiferromagnets for magnetic memory devices, terahertz sources, and detectors. 
    more » « less
  5. Mn 3 Sn, a metallic antiferromagnet with an anti-chiral 120° spin structure, generates intriguing magneto-transport signatures such as a large anomalous Hall effect, spin-polarized current with novel symmetries, anomalous Nernst effect, and magneto-optic Kerr effect. When grown epitaxially as MgO(110)[001]∥Mn3Sn(01¯1¯0)[0001], Mn3Sn experiences a uniaxial tensile strain, which changes the bulk sixfold anisotropy to a twofold perpendicular magnetic anisotropy (PMA). Here, we investigate the field-assisted spin–orbit-torque (SOT)-driven dynamics in single-domain Mn3Sn with PMA. We find that for non-zero external magnetic fields, the magnetic octupole moment of Mn3Sn can be switched between the two stable states if the input current is between two field-dependent critical currents. Below the lower critical current, the magnetic octupole moment exhibits a stationary state in the vicinity of the initial stable state. On the other hand, above the higher critical current, the magnetic octupole moment shows oscillatory dynamics which could, in principle, be tuned from the 100s of megahertz to the terahertz range. We obtain approximate analytic expressions of the two critical currents that agree very well with the numerical simulations for experimentally relevant magnetic fields. We also obtain a unified functional form of the switching time vs the input current for different magnetic fields. Finally, we show that for lower values of Gilbert damping (α≲2×10−3), the critical currents and the final steady states depend significantly on α. The numerical and analytic results presented in our work can be used by both theorists and experimentalists to understand the SOT-driven order dynamics in PMA Mn3Sn and design future experiments and devices. 
    more » « less