skip to main content


Title: Highly conductive and transparent coatings from flow-aligned silver nanowires with large electrical and optical anisotropy
Conductive and transparent coatings consisting of silver nanowires (AgNWs) are promising candidates for emerging flexible electronics applications. Coatings of aligned AgNWs offer unusual electronic and optical anisotropies, with potential for use in micro-circuits, antennas, and polarization sensors. Here we explore a microfluidics setup and flow-induced alignment mechanisms to create centimeter-scale highly conductive coatings of aligned AgNWs with order parameters reaching 0.84, leading to large electrical and optical anisotropies. By varying flow rates, we establish the relationship between the shear rate and the alignment and investigate possible alignment mechanisms. The angle-dependent sheet resistance of the aligned AgNW networks exhibits an electronic transport anisotropy of ∼10× while maintaining low resistivity (<50 Ω sq −1 ) in all directions. When illuminated, the aligned AgNW coatings exhibit angle- and polarization-dependent colors, and the polarized reflection anisotropy can be as large as 25. This large optical anisotropy is due to a combination of alignment, polarization response, and angle-dependent scattering of the aligned AgNWs.  more » « less
Award ID(s):
1659512
NSF-PAR ID:
10207654
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
11
ISSN:
2040-3364
Page Range / eLocation ID:
6438 to 6448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type‐separated (semiconducting and metallic) CNTs are synthesized and polarization‐dependent third‐harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength‐dependent, intense THG signals, enhanced through exciton resonances, and third‐order nonlinear optical susceptibilities of 2.50 × 10−19 m2 V−2(semiconducting CNTs) and 1.23 × 10−19 m2 V−2(metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization‐dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large‐size CNT film with good alignment. These findings promise applications of aligned CNT films in mid‐infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long‐wave detection, and high‐performance anisotropic nonlinear photonic devices.

     
    more » « less
  2. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance. 
    more » « less
  3. Abstract

    We present 870μm Atacama Large Millimeter/submillimeter Array polarization observations of thermal dust emission from the iconic, edge-on debris diskβPic. While the spatially resolved map does not exhibit detectable polarized dust emission, we detect polarization at the ∼3σlevel when averaging the emission across the entire disk. The corresponding polarization fraction isPfrac= 0.51% ± 0.19%. The polarization position angleχis aligned with the minor axis of the disk, as expected from models of dust grains aligned via radiative alignment torques (RAT) with respect to a toroidal magnetic field (B-RAT) or with respect to the anisotropy in the radiation field (k-RAT). When averaging the polarized emission across the outer versus inner thirds of the disk, we find that the polarization arises primarily from the SW third. We perform synthetic observations assuming grain alignment via bothk-RAT andB-RAT. Both models produce polarization fractions close to our observed value when the emission is averaged across the entire disk. When we average the models in the inner versus outer thirds of the disk, we find thatk-RAT is the likely mechanism producing the polarized emission inβPic. A comparison of timescales relevant to grain alignment also yields the same conclusion. For dust grains with realistic aspect ratios (i.e.,s> 1.1), our models imply low grain-alignment efficiencies.

     
    more » « less
  4. Abstract

    Magneto‐optical (MO) coupling incorporates photon‐induced change of magnetic polarization that can be adopted in ultrafast switching, optical isolators, mode convertors, and optical data storage components for advanced optical integrated circuits. However, integrating plasmonic, magnetic, and dielectric properties in one single material system poses challenges since one natural material can hardly possess all these functionalities. Here, co‐deposition of a three‐phase heterostructure composed of a durable conductive nitride matrix with embedded core–shell vertically aligned nanopillars, is demonstrated. The unique coupling between ferromagnetic NiO core and atomically sharp plasmonic Au shell enables strong MO activity out‐of‐plane at room temperature. Further, a template growth process is applied, which significantly enhances the ordering of the nanopillar array. The ordered nanostructure offers two schemes of spin polarization which result in stronger antisymmetry of Kerr rotation. The presented complex hybrid metamaterial platform with strong magnetic and optical anisotropies is promising for tunable and modulated all‐optical‐based nanodevices.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We present an interpretation of anisotropy and intensity of supra-thermal ions near a fast quasi-perpendicular reverse shock measured by Solar Terrestrial Relations Observatory Ahead (ST-A) on 2008 March 9. The measured intensity profiles of the supra-thermal particles exhibit an enhancement, or ‘spike’, at the time of the shock arrival and pitch-angle anisotropies before the shock arrival are bi-modal, jointly suggesting trapping of near-scatter-free ions along magnetic field lines that intersect the shock at two locations. We run test-particle simulations with pre-existing upstream magnetostatic fluctuations advected across the shock. The measured bi-modal upstream anisotropy, the nearly field-aligned anisotropies up to ∼15 min upstream of the shock, as well as the ‘pancake-like’ anisotropies up to ∼10 min downstream of the shock are well reproduced by the simulations. These results, in agreement with earlier works, suggest a dominant role of the large-scale structure (100s of supra-thermal proton gyroradii) of the magnetic field in forging the early-on particle acceleration at shocks. 
    more » « less