skip to main content


Title: The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond
In this paper, we consider federated Q-learning, which aims to learn an optimal Q-function by periodically aggregating local Q-estimates trained on local data alone. Focusing on infinite-horizon tabular Markov decision processes, we provide sample complexity guarantees for both the synchronous and asynchronous variants of federated Q-learning. In both cases, our bounds exhibit a linear speedup with respect to the number of agents and sharper dependencies on other salient problem parameters. Moreover, existing approaches to federated Q-learning adopt an equally-weighted averaging of local Q-estimates, which can be highly sub-optimal in the asynchronous setting since the local trajectories can be highly heterogeneous due to different local behavior policies. Existing sample complexity scales inverse proportionally to the minimum entry of the stationary state-action occupancy distributions over all agents, requiring that every agent covers the entire state-action space. Instead, we propose a novel importance averaging algorithm, giving larger weights to more frequently visited state-action pairs. The improved sample complexity scales inverse proportionally to the minimum entry of the average stationary state-action occupancy distribution of all agents, thus only requiring the agents collectively cover the entire state-action space, unveiling the blessing of heterogeneity.  more » « less
Award ID(s):
2007834
PAR ID:
10462281
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates a model-free algorithm of broad interest in reinforcement learning, namely, Q-learning. Whereas substantial progress had been made toward understanding the sample efficiency of Q-learning in recent years, it remained largely unclear whether Q-learning is sample-optimal and how to sharpen the sample complexity analysis of Q-learning. In this paper, we settle these questions: (1) When there is only a single action, we show that Q-learning (or, equivalently, TD learning) is provably minimax optimal. (2) When there are at least two actions, our theory unveils the strict suboptimality of Q-learning and rigorizes the negative impact of overestimation in Q-learning. Our theory accommodates both the synchronous case (i.e., the case in which independent samples are drawn) and the asynchronous case (i.e., the case in which one only has access to a single Markovian trajectory).

     
    more » « less
  2. Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks by exploiting information from different agents. However, when each agent interacts with a po- tentially different environment, little to nothing is known theoretically about the non-asymptotic performance of FRL algorithms. The lack of such results can be attributed to various technical challenges and their intricate interplay: Markovian sampling, linear function approximation, multiple local updates to save communi- cation, heterogeneity in the reward functions and transition kernels of the agents’ MDPs, and continuous state-action spaces. Moreover, in the on-policy setting, the behavior policies vary with time, further complicating the analysis. In response, we introduce FedSARSA, a novel federated on-policy reinforcement learning scheme, equipped with linear function approximation, to address these challenges and provide a comprehensive finite-time error analysis. Notably, we establish that FedSARSA converges to a policy that is near-optimal for all agents, with the ex- tent of near-optimality proportional to the level of heterogeneity. Furthermore, we prove that FedSARSA leverages agent collaboration to enable linear speedups as the number of agents increases, which holds for both fixed and adaptive step-size configurations. 
    more » « less
  3. We study reinforcement learning (RL) in a setting with a network of agents whose states and actions interact in a local manner where the objective is to find localized policies such that the (discounted) global reward is maximized. A fundamental challenge in this setting is that the state-action space size scales exponentially in the number of agents, rendering the problem intractable for large networks. In this paper, we propose a scalable actor critic (SAC) framework that exploits the network structure and finds a localized policy that is an [Formula: see text]-approximation of a stationary point of the objective for some [Formula: see text], with complexity that scales with the local state-action space size of the largest [Formula: see text]-hop neighborhood of the network. We illustrate our model and approach using examples from wireless communication, epidemics, and traffic. 
    more » « less
  4. We study a model-free federated linear quadratic regulator (LQR) problem where M agents with unknown, distinct yet similar dynamics collaboratively learn an optimal policy to minimize an average quadratic cost while keeping their data private. To exploit the similarity of the agents' dynamics, we propose to use federated learning (FL) to allow the agents to periodically communicate with a central server to train policies by leveraging a larger dataset from all the agents. With this setup, we seek to understand the following questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close is the learned common policy to each agent's own optimal policy? (iii) Can each agent learn its own optimal policy faster by leveraging data from all agents? To answer these questions, we propose a federated and model-free algorithm named FedLQR. Our analysis overcomes numerous technical challenges, such as heterogeneity in the agents' dynamics, multiple local updates, and stability concerns. We show that FedLQR produces a common policy that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common policy and each agent's local optimal policy. Furthermore, we prove that when learning each agent's optimal policy, FedLQR achieves a sample complexity reduction proportional to the number of agents M in a low-heterogeneity regime, compared to the single-agent setting. 
    more » « less
  5. We initiate the study of federated reinforcement learning under environmental heterogeneity by considering a policy evaluation problem. Our setup involves agents interacting with environments that share the same state and action space but differ in their reward functions and state transition kernels. Assuming agents can communicate via a central server, we ask: Does exchanging information expedite the process of evaluating a common policy? To answer this question, we provide the first comprehensive finite-time analysis of a federated temporal difference (TD) learning algorithm with linear function approximation, while accounting for Markovian sampling, heterogeneity in the agents' environments, and multiple local updates to save communication. Our analysis crucially relies on several novel ingredients: (i) deriving perturbation bounds on TD fixed points as a function of the heterogeneity in the agents' underlying Markov decision processes (MDPs); (ii) introducing a virtual MDP to closely approximate the dynamics of the federated TD algorithm; and (iii) using the virtual MDP to make explicit connections to federated optimization. Putting these pieces together, we rigorously prove that in a low-heterogeneity regime, exchanging model estimates leads to linear convergence speedups in the number of agents. 
    more » « less