- Publication Date:
- NSF-PAR ID:
- 10166509
- Journal Name:
- Soft Matter
- Volume:
- 16
- Issue:
- 23
- Page Range or eLocation-ID:
- 5366 to 5387
- ISSN:
- 1744-683X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Polymers are increasingly being used in applications with nanostructured morphologies where almost all polymer molecules are within a few tens to hundreds of nanometers from some interface. From nearly three decades of study on polymers in simplified nanoconfined systems such as thin films, we have come to understand property changes in these systems as arising from interfacial effects where local dynamical perturbations are propagated deeper into the material. This review provides a summary of local glass transition temperature T g changes near interfaces, comparing across different types of interfaces: free surface, substrate, liquid, and polymer–polymer. Local versus film-average properties in thin films are discussed, making connections to other related property changes, while highlighting several historically important studies. By experimental necessity, most studies are on high enough molecule weight chains to be well entangled, although aspects that connect to lower molecule weight materials are described. Emphasis is made to identify observations and open questions that have yet to be fully understood such as the evidence of long-ranged interfacial effects, finite domain size, interfacial breadth, and chain connectivity.
-
Elastic broadband antireflection coatings for flexible optics using multi-layered polymer thin filmsFlexible optics and optoelectronic devices require stretchable and compliant antireflection coatings (ARC). Conventional optical coatings, typically inorganic thin films, are brittle and crack under strain, while porous or patterned surfaces often lack environmental endurance and/or involve complex processing. Polymeric optical thin films prepared by initiated chemical vapor deposition (iCVD) comprise a promising alternative class of materials. With iCVD, multilayered, uniform thin film coatings can be synthesized conformally on the surface of a temperature-sensitive substrate near room temperature with precise compositional and thickness control. In this study, a model two-layer coating design consisting of poly(1 H ,1 H ,6 H ,6 H -perfluorohexyl diacrylate) (pPFHDA) with a refractive index at 633 nm of n 633 = 1.426 was deposited atop poly(4-vinylpyridine) (p4VP, n 633 = 1.587). Broadband antireflection over the visible wavelength range (400–750 nm) was conferred to a transparent, flexible thermoplastic polyurethane (TPU) substrate ( n 633 ∼ 1.51), reducing the front-surface reflectance from ∼4% to ∼2%. The superior mechanical compliance of polymer ARCs over conventional inorganic coatings (MgF 2 , SiO 2 , and Al 2 O 3 ) on the TPU substrate was thoroughly investigated by monitoring the evolution of film morphology and tensile fracture with applied equibiaxialmore »
-
The temperature-dependent layer-resolved structure of 3 to 44 unit cell thick SrRuO 3 (SRO) films grown on Nb-doped SrTiO 3 substrates is investigated using a combination of high-resolution synchrotron x-ray diffraction and high-resolution electron microscopy to understand the role that structural distortions play in suppressing ferromagnetism in ultra-thin SRO films. The oxygen octahedral tilts and rotations and Sr displacements characteristic of the bulk orthorhombic phase are found to be strongly dependent on temperature, the film thickness, and the distance away from the film–substrate interface. For thicknesses, t, above the critical thickness for ferromagnetism ( t > 3 uc), the orthorhombic distortions decrease with increasing temperature above T C . Below T C , the structure of the films remains constant due to the magneto-structural coupling observed in bulk SRO. The orthorhombic distortions are found to be suppressed in the 2–3 interfacial layers due to structural coupling with the SrTiO 3 substrate and correlate with the critical thickness for ferromagnetism in uncapped SRO films.
-
Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nano-liter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasmamore »
-
Abstract Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely airmore »