skip to main content

Title: Chemical heterogeneity in interfacial layers of polymer nanocomposites
It is well-known that particle–polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Soft Matter
Page Range or eLocation-ID:
4784 to 4791
Sponsoring Org:
National Science Foundation
More Like this
  1. Next generation displays and lighting applications are increasingly using inorganic quantum dots (QDs) embedded in polymer matrices to impart bright and tunable emission properties. The toxicity of some heavy metals present in commercial QDs ( e.g. cadmium) has, however, raised concerns about the potential for QDs embedded in polymer matrices to be released during the manufacture, use, and end-of-life phases of the material. One important potential release scenario that polymer composites can experience in the environment is photochemically induced matrix degradation. This process is not well understood at the molecular level. To study this process, the effect of an artificially accelerated weathering process on QD–polymer nanocomposites has been explored by subjecting CdSe and CdSe/ZnS QDs embedded in poly(methyl methacrylate) (PMMA) to UVC irradiation in aqueous media. Significant matrix degradation of QD–PMMA was observed along with measurable mass loss, yellowing of the nanocomposites, and a loss of QD fluorescence. While ICP-MS identified the release of ions, confocal laser scanning microscopy and dark-field hyperspectral imaging were shown to be effective analytical techniques for revealing that QD-containing polymer fragments were also released into aqueous media due to matrix degradation. Viability experiments, which were conducted with Shewanella oneidensis MR-1, showed a statistically significant decreasemore »in bacterial viability when the bacteria were exposed to highly degraded QD-containing polymer fragments. Results from this study highlight the need to quantify not only the extent of nanoparticle release from a polymer nanocomposite but also to determine the form of the released nanoparticles ( e.g. ions or polymer fragments).« less
  2. A coarse-grained model has been built to study the effect of the interfacial interaction between spherical filler particles and polymer on the mechanical properties of polymer nanocomposites. The polymer is modeled as bead-spring chains, and nano-fillers grafted with coupling agent are embedded into the polymer matrix. The potential parameters for polymer and filler are optimized to maximally match styrene-butadiene rubber reinforced with silica particles. The results indicated that, to play a noticeable role in mechanical reinforcement, a critical value exists for the grafting density of the filler–polymer coupling agent. After reaching the critical value, the increase of grafting density can substantially enhance mechanical properties. It is also observed that the increase of grafting density does not necessarily increase the amount of independent polymer chains connected to fillers. Instead, a significant amount of increased grafting sites serve to further strengthen already connected polymer and filler, indicating that mechanical reinforcement can occur through the locally strengthened confinement at the filler–polymer interface. These understandings based on microstructure visualization shed light on the development of new filler polymer interfaces with better mechanical properties.
  3. Recent studies suggest chain adsorption in the melt may be responsible for a number of property changes in thin films by making correlations between the residual adsorbed layer thickness h ads ( t ) measured after a given solvent washing procedure as a function of annealing time t of the film at an elevated temperature prior to this solvent rinse. This procedure, frequently called “Guiselin's experiment”, refers to the thought experiment proposed in a 1992 theoretical treatment by Guiselin that assumed chain segments in contact with the surface are irreversibly adsorbed whereby unadsorbed chains could be washed away by solvent without disturbing the adsorbed substrate contact points in the melt. In the present work, we review this recent literature, identifying and experimentally testing a common protocol for forming adsorbed layers h ads ( t ) from solvent washing melt films. We find h ads ( t ) curves to be far less reproducible and reliable than implied in the literature, strongly dependent on solvent washing and substrate cleaning conditions, and annealing at elevated temperatures is unnecessary as densification of films sitting at room temperature makes the glassy film harder to wash off, leaving behind h ads of comparable thickness. Thismore »review also summarizes literature understanding developed over several decades of study on polymer adsorption in solution, which experimentally demonstrated that polymer chains in solution are highly mobile, diffusing and exchanging on the surface even in the limit of strong adsorption, contradicting Guiselin's assumption. Preformed adsorbed layers of different thicknesses h ads are shown to not affect the average glass transition temperature or physical aging of 30 nm thick films. In summary, a number of open questions and implications are discussed related to thin films and polymer nanocomposites.« less
  4. This work is focused on the mass transport of methanol and the methanol-assisted crack healing in poly(methyl methacrylate) (PMMA)–graphene composites at different temperatures. The effect of the fraction of graphene on the mass transport of methanol and the methanol-assisted crack healing is also studied. The experimental results reveal that adding graphene to the PMMA matrix increases the resistance to the migration/diffusion of methanol and polymer chains in the PMMA matrix, and the absorption of methanol follows anomalous diffusion. The activation energies for the case I transport and case II transport in the PMMA–graphene composites are relatively independent of the fraction of graphene, and are larger than the corresponding ones in pure PMMA. Increasing the healing time and healing temperature allows for more polymer chains to migrate/diffuse across fractured surfaces, leading to the increase in the fracture strength of the crack-healed PMMA–graphene composites.
  5. Porous carbon films were generated by thermal treatment of polymer films made from poly(acrylonitrile-co-methyl acrylate)/polyethylene terephthalate (PAN/PET) blend. The precursor films were fabricated by a dip-coating process using PAN/PET solutions in hexafluoro-2-propanol (HFIP). A two-step process, including stabilization and carbonization, was employed to produce the carbon films. PET functioned as a pore former. Specifically, porous carbon films with thicknesses from 0.38–1.83 μm and pore diameters between 0.1–10 μm were obtained. The higher concentrations of PET in the PAN/PET mixture and the higher withdrawal speed during dip-coating caused the formation of larger pores. The thickness of the carbon films can be regulated using the withdrawal speed used in the dip-coating deposition. We determined that the deposition of the porous carbon film on graphite substrate significantly increases the value of the interfacial shear strength between graphite plates and thermoplastic PP. This study has shown the feasibility of fabrication of 3D porous carbon structure on the surface of carbon materials for increasing the interfacial strength. We expect that this approach can be employed for the fabrication of high-performance carbon fiber-thermoplastic composites.