i Fusion: Individualized Fusion Learning
More Like this
-
Abstract Doping of polycyclic aromatic hydrocarbons (PAHs) with boron and/or nitrogen is emerging as a powerful tool to tailor the electronic structure and photophysical properties. AsN‐doped analogues of anthracene,N,N‐dihydrophenazines play important roles as redox mediators, battery materials, luminophores, and photoredox catalysts. Although benzannulation has been used successfully as a structural constraint to control the excited state properties, fusion of the N‐aryl groups to the phenazine backbone has rarely been explored. Herein, we report the first examples of dihydrophenazines, in which the N‐aryl groups are fused to the phenazine backbone via B←N Lewis pair formation. This results in structural rigidification, locking the molecules in a bent conformation, while also modulating the electronic structure through molecular polarization. B─N fusion inBNPz1−BNPz3induces a quinoid resonance structure with significant C─N(py) double bond character and reduces the antiaromatic character of the central pyrazine ring. Borylation also lowers the HOMO/LUMO (highest occupied/lowest unoccupied molecular orbital) energies and engenders bathochromic shifts in the emission. Further rigidification in the solid state gives rise to enhanced emission quantum yields, consistent with aggregation‐induced emission enhancement (AIEE) observed upon water addition to solutions in tetrahydrofuran (THF). The demonstrated structural control and fine‐tuning of optoelectronic properties are of great significance to potential applications as emissive materials and in photocatalysis.more » « less
-
Abstract PremiseThe ~140 species ofLoniceraare characterized by variously fused leaves, bracteoles, and ovaries, making it a model system for studying the evolution and development of organ fusion. However, previous phylogenetic analyses, based mainly on chloroplast DNA markers, have yielded uncertain and conflicting results. A well‐supported phylogeny ofLonicerawill allow us to trace the evolutionary history of organ fusion. MethodsWe inferred the phylogeny ofLonicerausing restriction site–associated DNA sequencing (RADSeq), sampling all major clades and 18 of the 23 subsections. This provided the basis for inferring the evolution of five fusion‐related traits. ResultsRADSeq data yielded a well‐resolved and well‐supported phylogeny. The two traditionally recognized subgenera (PericlymenumandChamaecerasus), three of the four sections (Isoxylosteum,Coeloxylosteum, andNintooa), and half of the subsections sampled were recovered as monophyletic. However, the large and heterogeneous sectionIsikawas strongly supported as paraphyletic.Nintooa, a clade of ~22 mostly vine‐forming species, includingL. japonica, was recovered in a novel position, raising the possibility of cytonuclear discordance. We document the parallel evolution of fused leaves, bracteoles, and ovaries, with rare reversals. Most strikingly, complete cupules, in which four fused bracteoles completely enclose two unfused ovaries, arose at least three times. Surprisingly, these appear to have evolved directly from ancestors with free bracteoles instead of partial cupules. ConclusionsWe provide the most comprehensive and well‐supported phylogeny ofLonicerato date. Our inference of multiple evolutionary shifts in organ fusion provides a solid foundation for in depth developmental and functional analyses.more » « less
An official website of the United States government

