skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific
Abstract Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO2 produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.  more » « less
Award ID(s):
1752796
PAR ID:
10166850
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
17
ISSN:
0894-8755
Page Range / eLocation ID:
5471 to 5491
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Internal climate variability confounds estimates of the climate response to forcing but offers an opportunity to examine the dynamics controlling Earth’s energy budget. This study analyzes the time-evolving impact of modes of low-frequency internal variability on global-mean surface temperature (GMST) and top-of-atmosphere (TOA) radiation in preindustrial control simulations from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The results show that the slow modes of variability with the largest impact on decadal GMST anomalies are focused in high-latitude ocean regions, where they have a minimal impact on global TOA radiation. When these regions warm, positive shortwave cloud and sea ice–albedo feedbacks largely cancel the negative feedback of outgoing longwave radiation, resulting in a weak net radiative feedback. As a consequence of the weak net radiative feedback, less energy is required to sustain these long-lived temperature anomalies. In contrast to these weakly radiating high-latitude modes, El Niño–Southern Oscillation (ENSO) has a large impact on the global energy budget, such that it remains the dominant influence on global TOA radiation out to decadal and longer time scales, despite its primarily interannual time scale. These results show that on decadal and longer time scales, different processes control internal variability in GMST than control internal variability in global TOA radiation. The results are used to quantify the impact of low-frequency internal variability and ENSO on estimates of climate sensitivity from historical GMST and TOA-radiative-imbalance anomalies. 
    more » « less
  2. null (Ed.)
    Abstract Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes. 
    more » « less
  3. null (Ed.)
    Abstract Radiative feedbacks depend on the spatial patterns of sea surface temperature (SST) and thus can change over time as SST patterns evolve—the so-called pattern effect. This study investigates intermodel differences in the magnitude of the pattern effect and how these differences contribute to the spread in effective equilibrium climate sensitivity (ECS) within CMIP5 and CMIP6 models. Effective ECS in CMIP5 estimated from 150-yr-long abrupt4×CO2 simulations is on average 10% higher than that estimated from the early portion (first 50 years) of those simulations, which serves as an analog for historical warming; this difference is reduced to 7% on average in CMIP6. The (negative) net radiative feedback weakens over the course of the abrupt4×CO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this weakening is less dramatic on average in CMIP6. For both ensembles, the total variance in the effective ECS is found to be dominated by the spread in radiative response on fast time scales, rather than the spread in feedback changes. Using Green’s functions derived from two AGCMs shows that the spread in feedbacks on fast time scales may be primarily due to differences in atmospheric model physics, whereas the spread in feedback evolution is primarily governed by differences in SST patterns. Intermodel spread in feedback evolution is well explained by differences in the relative warming in the west Pacific warm-pool regions for the CMIP5 models, but this relation fails to explain differences across the CMIP6 models, suggesting that a stronger sensitivity of extratropical clouds to surface warming may also contribute to feedback changes in CMIP6. 
    more » « less
  4. Abstract In response to greenhouse gas forcing, most coupled global climate models project the tropical Pacific SST trend toward an “El Niño–like” state, with a reduced zonal SST gradient and a weakened Walker circulation. However, observations over the last five decades reveal a trend toward a more “La Niña–like” state with a strengthening zonal SST gradient. Recent research indicates that the identified trend differences are unlikely to be entirely due to internal variability and probably result, at least in part, from systematic model biases. In this study, Community Earth System Model, version 2 (CESM2), is used to explore how mean-state biases within the model may influence its forced response to radiative forcing in the tropical Pacific. The results show that using flux adjustment to reduce the mean-state bias in CESM2 over the tropical regions results in a more La Niña–like trend pattern in the tropical Pacific, with a strengthening of the tropical Pacific zonal SST gradient and a relatively enhanced Walker circulation, as hypothesized to occur if the ocean thermostat mechanism is stronger than the atmospheric mechanisms which by themselves would weaken the Walker circulation. We also find that the historical strengthening of the tropical Pacific zonal gradient is transient but persists into the near term in a high-emissions future warming scenario. These results suggest the potential of flux adjustment as a method for developing alternative projections that represent a wider range of possible future tropical Pacific warming scenarios, especially for a better understanding of regional patterns of climate risk in the near term. 
    more » « less
  5. Abstract Reliable estimates of climate sensitivity require understanding how patterns of surface temperature change influence the global radiative feedback. Here we present a theoretical basis for this pattern effect as it relates to the longwave clear sky feedback. A moist adiabatic feedback framework is developed that partitions the feedback into components associated with locally determined moist adiabatic processes and components associated with deviations therefrom, such as due to nonlocal influences and relative humidity changes. Applying this feedback framework to simulations forced by transient and equilibrium patterns of sea surface temperature change reveals that the pattern effect is driven by different physical processes in different geographic regions. In the subtropics, the more stabilizing feedback under transient climate change is explained by a more negative relative humidity feedback. Over the Southern Ocean, the less stabilizing feedback under transient climate change occurs due to the muted surface warming there, which promotes a weak surface temperature feedback; furthermore, for an idealized pattern of change in which the transient sea surface temperature change is uniformly increased but retains the same structure, the pattern effect essentially disappears. The moist adiabatic feedback framework demonstrates that the evolving zonal-mean longwave clear sky feedback—towards stabilization at high latitudes and destabilization at low latitudes, as the climate approaches equilibrium—is controlled by processes, specifically surface temperature and relative humidity feedbacks, not isolated by conventional feedback analysis. In the global mean, the destabilization effect proves larger, receiving additional contributions from small but geographically extensive differences in the fixed-relative humidity atmospheric temperature feedback. 
    more » « less