skip to main content

Title: Towards Physical Design Management in Storage Systems
In the post-Moore era, systems and devices with new architectures will arrive at a rapid rate with significant impacts on the software stack. Applications will not be able to fully benefit from new architectures unless they can delegate adapting to new devices in lower layers of the stack. In this paper we introduce physical design management which deals with the problem of identifying and executing transformations on physical designs of stored data, i.e. how data is mapped to storage abstractions like files, objects, or blocks, in order to improve performance. Physical design is traditionally placed with applications, access libraries, and databases, using hard- wired assumptions about underlying storage systems. Yet, storage systems increasingly not only contain multiple kinds of storage devices with vastly different performance profiles but also move data among those storage devices, thereby changing the benefit of a particular physical design. We advocate placing physical design management in storage, identify interesting research challenges, provide a brief description of a prototype implementation in Ceph, and discuss the results of initial experiments at scale that are replicable using Cloudlab. These experiments show performance and resource utilization trade-offs associated with choosing different physical designs and choosing to transform between physical designs.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW)
Page Range or eLocation-ID:
40 to 49
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been a booming demand for integrating Convolutional Neural Networks (CNNs) powered functionalities into Internet-of-Thing (IoT) devices to enable ubiquitous intelligent "IoT cameras". However, more extensive applications of such IoT systems are still limited by two challenges. First, some applications, especially medicine-and wearable-related ones, impose stringent requirements on the camera form factor. Second, powerful CNNs often require considerable storage and energy cost, whereas IoT devices often suffer from limited resources. PhlatCam, with its form factor potentially reduced by orders of magnitude, has emerged as a promising solution to the first aforementioned challenge, while the second one remains a bottleneck. Existing compression techniques, which can potentially tackle the second challenge, are far from realizing the full potential in storage and energy reduction, because they mostly focus on the CNN algorithm itself. To this end, this work proposes SACoD, a Sensor Algorithm Co-Design framework to develop more efficient CNN-powered PhlatCam. In particular, the mask coded in the Phlat-Cam sensor and the backend CNN model are jointly optimized in terms of both model parameters and architectures via differential neural architecture search. Extensive experiments including both simulation and physical measurement on manufactured masks show that the proposed SACoD framework achieves aggressive model compressionmore »and energy savings while maintaining or even boosting the task accuracy, when benchmarking over two state-of-the-art (SOTA) designs with six datasets across four different vision tasks including classification, segmentation, image translation, and face recognition. Our codes are available at:« less
  2. Access libraries such as ROOT[1] and HDF5[2] allow users to interact with datasets using high level abstractions, like coordinate systems and associated slicing operations. Unfortunately, the implementations of access libraries are based on outdated assumptions about storage systems interfaces and are generally unable to fully benefit from modern fast storage devices. For example, access libraries often implement buffering and data layout that assume that large, single-threaded sequential access patterns are causing less overall latency than small parallel random access: while this is true for spinning media, it is not true for flash media. The situation is getting worse with rapidly evolving storage devices such as non-volatile memory and ever larger datasets. This project explores distributed dataset mapping infrastructures that can integrate and scale out existing access libraries using Ceph’s extensible object model, avoiding re-implementation or even modifications of these access libraries as much as possible. These programmable storage extensions coupled with our distributed dataset mapping techniques enable: 1) access library operations to be offloaded to storage system servers, 2) the independent evolution of access libraries and storage systems and 3) fully leveraging of the existing load balancing, elasticity, and failure management of distributed storage systems like Ceph. They also createmore »more opportunities to conduct storage server-local optimizations specific to storage servers. For example, storage servers might include local key/value stores combined with chunk stores that require different optimizations than a local file system. As storage servers evolve to support new storage devices like non-volatile memory, these server-local optimizations can be implemented while minimizing disruptions to applications. We will report progress on the means by which distributed dataset mapping can be abstracted over particular access libraries, including access libraries for ROOT data, and how we address some of the challenges revolving around data partitioning and composability of access operations.« less
  3. Scientific research and development campaigns are materialized by workflows of applications executing on high-performance computing (HPC) systems. These applications con-sist of tasks that can have inter- or intra-application flows of data to achieve the research goals successfully. These dataflows create dependencies among the tasks and cause resource con-tention on shared storage systems, thus limiting the aggregated I/O bandwidth achieved by the workflow. However, these I/O performance issues are often solved by tedious and manual efforts that demand holistic knowledge about the data dependencies in the workflow and the information about the infrastructure being utilized. Taking this into consideration, we design DFMan, a graph-based dataflow management and optimization framework for maximizing I/O bandwidth by leveraging the powerful storage stack on HPC systems to manage data sharing optimally among the tasks in the workflows. In particular, we devise a graph-based optimization algorithm that can leverage an intuitive graph representation of dataflow- and system-related information, and automatically carry out co-scheduling of task and data placement. According to our experiments, DFMan optimizes a wide variety of scientific workflows such as Hurricane 3D on Cloud Model 1 (CM1), Montage Carina Nebula (NGC3372), and an emulated dataflow kernel of the Multiscale Machine-learned Modeling Infrastructure (MuMMI I/O)more »on the Lassen supercomputer, and improves their aggregated I/O bandwidth by up to 5.42 x, 2.12 x and 1.29 x, respectively, compared to the baseline bandwidth.« less
  4. Summary

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale‐level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore how different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. We quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and executionmore »of scientific algorithms.

    « less
  5. To bridge the giant semantic gap between applications and modern storage systems, passing a piece of tiny and useful information, called I/O access hints, from upper layers to the storage layer may greatly improve application performance and ease data management in storage systems. This is especially true for heterogeneous storage systems that consist of multiple types of storage devices. Since ingesting external access hints will likely involve laborious modifications of legacy I/O stacks, it is very hard to evaluate the effect and take advantages of access hints. In this article, we design a generic and flexible framework, called HintStor, to quickly play with a set of I/O access hints and evaluate their impacts on heterogeneous storage systems. HintStor provides a new application/user-level interface, a file system plugin, and performs data management with a generic block storage data manager. We demonstrate the flexibility of HintStor by evaluating four types of access hints: file system data classification, stream ID, cloud prefetch, and I/O task scheduling on a Linux platform. The results show that HintStor can execute and evaluate various I/O access hints under different scenarios with minor modifications to the kernel and applications.