skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Towards Physical Design Management in Storage Systems
In the post-Moore era, systems and devices with new architectures will arrive at a rapid rate with significant impacts on the software stack. Applications will not be able to fully benefit from new architectures unless they can delegate adapting to new devices in lower layers of the stack. In this paper we introduce physical design management which deals with the problem of identifying and executing transformations on physical designs of stored data, i.e. how data is mapped to storage abstractions like files, objects, or blocks, in order to improve performance. Physical design is traditionally placed with applications, access libraries, and databases, using hard- wired assumptions about underlying storage systems. Yet, storage systems increasingly not only contain multiple kinds of storage devices with vastly different performance profiles but also move data among those storage devices, thereby changing the benefit of a particular physical design. We advocate placing physical design management in storage, identify interesting research challenges, provide a brief description of a prototype implementation in Ceph, and discuss the results of initial experiments at scale that are replicable using Cloudlab. These experiments show performance and resource utilization trade-offs associated with choosing different physical designs and choosing to transform between physical designs.  more » « less
Award ID(s):
1836650
PAR ID:
10166880
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW)
Page Range / eLocation ID:
40 to 49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To bridge the giant semantic gap between applications and modern storage systems, passing a piece of tiny and useful information, called I/O access hints, from upper layers to the storage layer may greatly improve application performance and ease data management in storage systems. This is especially true for heterogeneous storage systems that consist of multiple types of storage devices. Since ingesting external access hints will likely involve laborious modifications of legacy I/O stacks, it is very hard to evaluate the effect and take advantages of access hints. In this article, we design a generic and flexible framework, called HintStor, to quickly play with a set of I/O access hints and evaluate their impacts on heterogeneous storage systems. HintStor provides a new application/user-level interface, a file system plugin, and performs data management with a generic block storage data manager. We demonstrate the flexibility of HintStor by evaluating four types of access hints: file system data classification, stream ID, cloud prefetch, and I/O task scheduling on a Linux platform. The results show that HintStor can execute and evaluate various I/O access hints under different scenarios with minor modifications to the kernel and applications. 
    more » « less
  2. A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a profound impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore’s law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage component to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which has a profound impact on the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy allowing for better hardware utilization, and ultimately better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware, as well as the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control. 
    more » « less
  3. A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a significant impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore's law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage components to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which profoundly impacts the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy, allowing for better hardware utilization and, ultimately, better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware and the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control. 
    more » « less
  4. The Internet of Things (IoT), forming the foundation of Cyber Physical Systems (CPS), connects a huge number of ubiquitous sensing and mobile computing devices. The mobile IoT systems generate an enormous volume of a variety of dynamic context data and typically count on centralized architectures to process them. However, their inability to ensure security and decline in communication efficiency and response time with the increase in the size of IoT network are some of the many concerning weaknesses that are holding back the fast-paced growth of IoT. Realizing the limitations of centralized systems, recently blockchain-based decentralized architecture is being considered as the key to redesigning the IoT systems in a way that is designed to be secure, transparent, highly resistant to outages, auditable, and efficient. However, before realizing the new promise of blockchain for IoT, there are significant challenges to address. One fundamental challenge is the scale issue around data collection, storage, and analytic as IoT sensor devices possess limited computational power and storage capabilities. In particular, since the chain is always growing, IoT devices require more and more resources. Thus, an oversized chain poses storage and scalability problems. With this in mind, the overall goal of our research is to design a lightweight scalable blockchain framework for IoT of mobile devices. This framework, coined as "Sensor-Chain", promises a new generation of lightweight blockchain management with a superior reduction in resource consumption, and at the same time capable of retaining critical information about the IoT systems of mobile devices. 
    more » « less
  5. Access libraries such as ROOT[1] and HDF5[2] allow users to interact with datasets using high level abstractions, like coordinate systems and associated slicing operations. Unfortunately, the implementations of access libraries are based on outdated assumptions about storage systems interfaces and are generally unable to fully benefit from modern fast storage devices. For example, access libraries often implement buffering and data layout that assume that large, single-threaded sequential access patterns are causing less overall latency than small parallel random access: while this is true for spinning media, it is not true for flash media. The situation is getting worse with rapidly evolving storage devices such as non-volatile memory and ever larger datasets. This project explores distributed dataset mapping infrastructures that can integrate and scale out existing access libraries using Ceph’s extensible object model, avoiding re-implementation or even modifications of these access libraries as much as possible. These programmable storage extensions coupled with our distributed dataset mapping techniques enable: 1) access library operations to be offloaded to storage system servers, 2) the independent evolution of access libraries and storage systems and 3) fully leveraging of the existing load balancing, elasticity, and failure management of distributed storage systems like Ceph. They also create more opportunities to conduct storage server-local optimizations specific to storage servers. For example, storage servers might include local key/value stores combined with chunk stores that require different optimizations than a local file system. As storage servers evolve to support new storage devices like non-volatile memory, these server-local optimizations can be implemented while minimizing disruptions to applications. We will report progress on the means by which distributed dataset mapping can be abstracted over particular access libraries, including access libraries for ROOT data, and how we address some of the challenges revolving around data partitioning and composability of access operations. 
    more » « less