skip to main content


Title: Learning Norms from Stories: A Prior for Value Aligned Agents
Value alignment is a property of an intelligent agent indicating that it can only pursue goals and activities that are beneficial to humans. Traditional approaches to value alignment use imitation learning or preference learning to infer the values of humans by observing their behavior. We introduce a complementary technique in which a value-aligned prior is learned from naturally occurring stories which encode societal norms. Training data is sourced from the children's educational comic strip, Goofus & Gallant. In this work, we train multiple machine learning models to classify natural language descriptions of situations found in the comic strip as normative or non-normative by identifying if they align with the main characters' behavior. We also report the models' performance when transferring to two unrelated tasks with little to no additional training on the new task.  more » « less
Award ID(s):
1849231
NSF-PAR ID:
10166962
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AIES '20: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society
Page Range / eLocation ID:
124 to 130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As humans interact with autonomous agents to perform increasingly complicated, potentially risky tasks, it is important to be able to efficiently evaluate an agent’s performance and correctness. In this paper we formalize and theoretically analyze the problem of efficient value alignment verification: how to efficiently test whether the behavior of another agent is aligned with a human’s values. The goal is to construct a kind of “driver’s test” that a human can give to any agent which will verify value alignment via a minimal number of queries. We study alignment verification problems with both idealized humans that have an explicit reward function as well as problems where they have implicit values. We analyze verification of exact value alignment for rational agents and propose and analyze heuristic and approximate value alignment verification tests in a wide range of gridworlds and a continuous autonomous driving domain. Finally, we prove that there exist sufficient conditions such that we can verify exact and approximate alignment across an infinite set of test environments via a constant- query-complexity alignment test. 
    more » « less
  2. Growing concerns about the AI alignment problem have emerged in recent years, with previous work focusing mostly on (1) qualitative descriptions of the alignment problem; (2) attempting to align AI actions with human interests by focusing on value specification and learning; and/or (3) focusing on either a single agent or on humanity as a singular unit. However, the field as a whole lacks a systematic understanding of how to specify, describe and analyze misalignment among entities, which may include individual humans, AI agents, and complex compositional entities such as corporations, nation-states, and so forth. Prior work on controversy in computational social science offers a mathematical model of contention among populations (of humans). In this paper, we adapt this contention model to the alignment problem, and show how viewing misalignment can vary depending on the population of agents (human or otherwise) being observed as well as the domain or "problem area" in question. Our model departs from value specification approaches and focuses instead on the morass of complex, interlocking, sometimes contradictory goals that agents may have in practice. We discuss the implications of our model and leave more thorough verification for future work. 
    more » « less
  3. Training emotion recognition models has relied heavily on human annotated data, which present diversity, quality, and cost challenges. In this paper, we explore the potential of Large Language Models (LLMs), specifically GPT-4, in automating or assisting emotion annotation. We compare GPT-4 with supervised models and/or humans in three aspects: agreement with human annotations, alignment with human perception, and impact on model training. We find that common metrics that use aggregated human annotations as ground truth can underestimate GPT-4's performance, and our human evaluation experiment reveals a consistent preference for GPT-4 annotations over humans across multiple datasets and evaluators. Further, we investigate the impact of using GPT-4 as an annotation filtering process to improve model training. Together, our findings highlight the great potential of LLMs in emotion annotation tasks and underscore the need for refined evaluation methodologies. 
    more » « less
  4. Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback. The so-called algorithm, Reinforcement Learning with Human Feedback (RLHF) demonstrates impressive performance on the GPT series models. However, the underlying reinforcement learning algorithm is complex and requires additional training for reward and value networks. In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner. Such an algorithm doesn’t require any additional parameters except for the original language model and maximally reuses the pretraining pipeline. To achieve this, we formulate instruction alignment problem for language models as a goal-reaching problem in decision making. We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions. The resulting two-stage algorithm shed light to a family of reward-free approaches that utilize the hindsightly relabeled instructions based on feedback. We evaluate the performance of HIR extensively on 12 challenging BigBench reasoning tasks and show that HIR outperforms the baseline algorithms and is comparable to or even surpasses supervised fine-tuning. The implementation of HIR is available at https://github.com/tianjunz/HIR. 
    more » « less
  5. A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems. 
    more » « less