skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In situ bidirectional human-robot value alignment.
A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.  more » « less
Award ID(s):
2015577
PAR ID:
10351399
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science robotics
ISSN:
2470-9476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As intelligent systems gain autonomy and capability, it becomes vital to ensure that their objectives match those of their human users; this is known as the value-alignment problem. In robotics, value alignment is key to the design of collaborative robots that can integrate into human workflows, successfully inferring and adapting to their users’ objectives as they go.We argue that a meaningful solution to value alignment must combine multi-agent decision theory with rich mathematical models of human cognition, enabling robots to tap into people’s natural collaborative capabilities. We present a solution to the cooperative inverse reinforcement learning (CIRL) dynamic game based on well-established cognitive models of decision making and theory of mind. The solution captures a key reciprocity relation: the human will not plan her actions in isolation, but rather reason pedagogically about how the robot might learn from them; the robot, in turn, can anticipate this and interpret the human’s actions pragmatically. To our knowledge, this work constitutes the first formal analysis of value alignment grounded in empirically validated cognitive models. 
    more » « less
  2. While a vast collection of explainable AI (XAI) algorithms has been developed in recent years, they have been criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective ---a fundamental property of human explanations---by selectively presenting a subset of model reasoning based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small dataset. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three paradigms based on our proposed framework: in Study 1, we ask the participants to provide critique-based or open-ended input to generate selective explanations (self-input). In Study 2, we show the participants selective explanations based on input from a panel of similar users (annotator input). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving collaborative decision making and subjective perceptions of the AI system, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potential to encourage future work to make AI explanations more human-compatible. 
    more » « less
  3. For robots to seamlessly interact with humans, we first need to make sure that humans and robots understand one another. Diverse algorithms have been developed to enable robots to learn from humans (i.e., transferring information from humans to robots). In parallel, visual, haptic, and auditory communication interfaces have been designed to convey the robot’s internal state to the human (i.e., transferring information from robots to humans). Prior research often separates these two directions of information transfer, and focuses primarily on either learning algorithms or communication interfaces. By contrast, in this survey we take an interdisciplinary approach to identify common themes and emerging trends that close the loop between learning and communication. Specifically, we survey state-of-the-art methods and outcomes for communicating a robot’s learning back to the human teacher during human-robot interaction. This discussion connects human-in-the-loop learning methods and explainable robot learning with multimodal feedback systems and measures of human-robot interaction. We find that—when learning and communication are developed together—the resulting closed-loop system can lead to improved human teaching, increased human trust, and human-robot co-adaptation. The paper includes a perspective on several of the interdisciplinary research themes and open questions that could advance how future robots communicate their learning to everyday operators. Finally, we implement a selection of the reviewed methods in a case study where participants kinesthetically teach a robot arm. This case study documents and tests an integrated approach for learning in ways that can be communicated, conveying this learning across multimodal interfaces, and measuring the resulting changes in human and robot behavior. 
    more » « less
  4. Policy summarization is a computational paradigm for explaining the behavior and decision-making processes of autonomous robots to humans. It summarizes robot policies via exemplary demonstrations, aiming to improve human understanding of robotic behaviors. This understanding is crucial, especially since users often make critical decisions about robot deployment in the real world. Previous research in policy summarization has predominantly focused on simulated robots and environments, overlooking its application to physically embodied robots. Our work fills this gap by combining current policy summarization methods with a novel, interactive user interface that involves physical interaction with robots. We conduct human-subject experiments to assess our explanation system, focusing on the impact of different explanation modalities in policy summarization. Our findings underscore the unique advantages of combining virtual and physical training environments to effectively communicate robot behavior to human users. 
    more » « less
  5. null (Ed.)
    A means to communicate by touch is established when two humans grasp a common rigid object, and such communication is thought to play a role in the superior performance two humans acting together are able to demonstrate over either agent acting alone. But the superior performance demonstrated by dyads, whether in making point-to-point movements or tracking unpredictable targets, is strictly empirical to date. Mechanistic accounts for the performance improvement and explanations relying on haptic communication have been lacking. In this paper we develop a model of haptic communication across a linkage connecting two agents that provides an explicit means for the dyad to achieve a higher loop gain than either agent acting alone and higher than the two agents acting together without haptic feedback. We show that haptic communication closes an additional feedback loop through the linkage and the sensorimotor control systems of both agents. This feedback loop contributes a new factor to the loop gain and thus a definitive mechanism for the dyad to improve performance. Our model predicts higher internal forces with haptic communication, which have previously been observed. Additional testable hypotheses emerge from the model and create a promising future means to transfer human-human dyad behaviors to human-robot teams. 
    more » « less