Abstract Design artifacts provide a mechanism for illustrating design information and concepts, but their effectiveness relies on alignment across design agents in what these artifacts represent. This work investigates the agreement between multi-modal representations of design artifacts by humans and artificial intelligence (AI). Design artifacts are considered to constitute stimuli designers interact with to become inspired (i.e., inspirational stimuli), for which retrieval often relies on computational methods using AI. To facilitate this process for multi-modal stimuli, a better understanding of human perspectives of non-semantic representations of design information, e.g., by form or function-based features, is motivated. This work compares and evaluates human and AI-based representations of 3D-model parts by visual and functional features. Humans and AI were found to share consistent representations of visual and functional similarities, which aligned well with coarse, but not more granular, levels of similarity. Human–AI alignment was higher for identifying low compared to high similarity parts, suggesting mutual representation of features underlying more obvious than nuanced differences. Human evaluation of part relationships in terms of belonging to the same or different categories revealed that human and AI-derived relationships similarly reflect concepts of “near” and “far.” However, levels of similarity corresponding to “near” and “far” differed depending on the criteria evaluated, where “far” was associated with nearer visually than functionally related stimuli. These findings contribute to a fundamental understanding of human evaluation of information conveyed by AI-represented design artifacts needed for successful human–AI collaboration in design.
more »
« less
Quantifying Misalignment Between Agents
Growing concerns about the AI alignment problem have emerged in recent years, with previous work focusing mostly on (1) qualitative descriptions of the alignment problem; (2) attempting to align AI actions with human interests by focusing on value specification and learning; and/or (3) focusing on either a single agent or on humanity as a singular unit. However, the field as a whole lacks a systematic understanding of how to specify, describe and analyze misalignment among entities, which may include individual humans, AI agents, and complex compositional entities such as corporations, nation-states, and so forth. Prior work on controversy in computational social science offers a mathematical model of contention among populations (of humans). In this paper, we adapt this contention model to the alignment problem, and show how viewing misalignment can vary depending on the population of agents (human or otherwise) being observed as well as the domain or "problem area" in question. Our model departs from value specification approaches and focuses instead on the morass of complex, interlocking, sometimes contradictory goals that agents may have in practice. We discuss the implications of our model and leave more thorough verification for future work.
more »
« less
- Award ID(s):
- 2147305
- PAR ID:
- 10438135
- Date Published:
- Journal Name:
- ML Safety @ NeurIPS 2022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.more » « less
-
As humans interact with autonomous agents to perform increasingly complicated, potentially risky tasks, it is important to be able to efficiently evaluate an agent’s performance and correctness. In this paper we formalize and theoretically analyze the problem of efficient value alignment verification: how to efficiently test whether the behavior of another agent is aligned with a human’s values. The goal is to construct a kind of “driver’s test” that a human can give to any agent which will verify value alignment via a minimal number of queries. We study alignment verification problems with both idealized humans that have an explicit reward function as well as problems where they have implicit values. We analyze verification of exact value alignment for rational agents and propose and analyze heuristic and approximate value alignment verification tests in a wide range of gridworlds and a continuous autonomous driving domain. Finally, we prove that there exist sufficient conditions such that we can verify exact and approximate alignment across an infinite set of test environments via a constant- query-complexity alignment test.more » « less
-
Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? These scenarios force us to evaluate the trade-off between collective norms and our own personal objectives. To create effective AI-human teams, we must equip AI agents with a model of how humans make trade-offs in complex, constrained environments. These agents will be able to mirror human behavior or to draw human attention to situations where decision making could be improved. To this end, we propose a novel inverse reinforcement learning (IRL) method for learning implicit hard and soft constraints from demonstrations, enabling agents to quickly adapt to new settings. In addition, learning soft constraints over states, actions, and state features allows agents to transfer this knowledge to new domains that share similar aspects.more » « less
-
The increasing deployment of robots in co-working scenarios with humans has revealed complex safety and efficiency challenges in the computation of the robot behavior. Movement among humans is one of the most fundamental —and yet critical—problems in this frontier. While several approaches have addressed this problem from a purely navigational point of view, the absence of a unified paradigm for communicating with humans limits their ability to prevent deadlocks and compute feasible solutions. This paper presents a joint communication and motion planning framework that selects from an arbitrary input set of robot's communication signals while computing robot motion plans. It models a human co-worker's imperfect perception of these communications using a noisy sensor model and facilitates the specification of a variety of social/workplace compliance priorities with a flexible cost function. Theoretical results and simulator-based empirical evaluations show that our approach efficiently computes motion plans and communication strategies that reduce conflicts between agents and resolve potential deadlocks.more » « less