The self-assembly of colloidal magnetic Janus particles with a laterally displaced (or shifted), permanent dipole in a quasi-two-dimensional system is studied using Brownian dynamics simulations. The rate of formation of clusters and their structures are quantified for several values of dipolar shift from the particle center, which is nondimensionalized using the particle's radius so that it takes values ranging from 0 to 1, and examined under different magnetic interaction strengths relative to Brownian motion. For dipolar shifts close to 0, chain-like structures are formed, which grow at long times following a power law, while particles of shift higher than 0.2 generally aggregate in ring-like clusters that experience limited growth. In the case of shifts between 0.4 and 0.5, the particles tend to aggregate in clusters of 3 to 6, while for all shifts higher than 0.6 clusters rarely contain more than 3 particles due to the antiparallel dipole orientations that are most stable at those shifts. The strength of the magnetic interactions hastens the rate at which clusters are formed; however, the effect it has on cluster size is lessened by increases in the shift of the dipoles. These results contribute to better understand the dynamics of magnetic Janus particles and can help the synthesis of functionalized materials for specific applications such as drug delivery.
more »
« less
Self-assembly of magnetic colloids with radially shifted dipoles
Anisotropic potentials in Janus colloids provide additional freedom to control particle aggregation into structures of different sizes and morphologies. In this work, we perform Brownian dynamics simulations of a dilute suspension of magnetic spherical Janus colloids with their magnetic dipole moments shifted radially towards the surface of the particle in order to gain valuable microstructural insight. Properties such as the mean cluster size, orientational ordering, and nucleation and growth are examined dynamically. Differences in the structure of clusters and in the aggregation process are observed depending on the dipolar shift ( s )—the ratio between the displacement of the dipole and the particle radius—and the dipolar coupling constant ( λ )—the ratio between the magnetic dipole–dipole and Brownian forces. Using these two dimensionless quantities, a structural “phase” diagram is constructed. Each phase corresponds to unique nucleation and growth behavior and orientational ordering of dipoles inside clusters. At small λ , the particles aggregate and disaggregate resulting in short-lived clusters at small s , while at high s the particles aggregate in permanent triplets (long-lived clusters). At high λ , the critical nuclei formed during the nucleation process are triplets and quadruplets with unique orientational ordering. These small clusters then serve as building blocks to form larger structures, such as single-chain, loop-like, island-like, worm-like, and antiparallel-double-chain clusters. This study shows that dipolar shifts in colloids can serve as a control parameter in applications where unique size, morphology, and aggregation kinetics of clusters are required.
more »
« less
- Award ID(s):
- 1705565
- PAR ID:
- 10167002
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 2460 to 2472
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Magnetically-guided colloidal assembly has proven to be a versatile method for building hierarchical particle assemblies. This review describes the dipolar interactions that govern superparamagnetic colloids in time-varying magnetic fields, and how such interactions have guided colloidal assembly into materials with increasing complexity that display novel dynamics. The assembly process is driven by magnetic dipole–dipole interactions, whose strength can be tuned to be attractive or repulsive. Generally, these interactions are directional in static external magnetic fields. More recently, time-varying magnetic fields have been utilized to generate dipolar interactions that vary in both time and space, allowing particle interactions to be tuned from anisotropic to isotropic. These interactions guide the dynamics of hierarchical assemblies of 1-D chains, 2-D networks, and 2-D clusters in both static and time-varying fields. Specifically, unlinked and chemically-linked colloidal chains exhibit complex dynamics, such as fragmentation, buckling, coiling, and wagging phenomena. 2-D networks exhibit controlled porosity and interesting coarsening dynamics. Finally, 2-D clusters have shown to be an ideal model system for exploring phenomena related to statistical thermodynamics. This review provides recent advances in this fast-growing field with a focus on its scientific potential.more » « less
-
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle−particle interactions is limited. This work presents results under a combination of electric and magnetic fields. When these two fields are orthogonally applied, we can independently tune the magnitude and direction of the dipolar attraction and repulsion between the particles. As a result, we obtain well-aligned, highly dense, but individually separated linear chains at intermediate particle concentrations. Both the inter- and intrachain spacings can be tuned by adjusting the particle concentration and relative strengths of both fields. At high particle concentrations and by tuning the electric field frequency, the individual microspheres can assemble into colloidal oligomers such as trimers, tetramers, heptamers, and nonamers in response to the electric field due to the synergy between dipolar and electrohydrodynamic interactions. These oligomers, in turn, serve as building blocks for making hierarchical structures with finer architectures upon superimposing a one-dimensional (1D) magnetic field. In addition to experiments, Monte Carlo (MC) simulations have been performed on colloids confined near the electrode, interacting through a Stockmayer-like potential. They faithfully reproduce key observations in the experiments. Our work demonstrates the potential of using orthogonal electric and magnetic fields to assemble diversified types of highly aligned structures for applications in high-strength composites, optical materials, or structured battery electrodes.more » « less
-
For magnetite spherical nanoparticles, the orientation of the dipole moment in the crystal does not affect the morphology of either zero field or field induced structures. For non-spherical particles however, an interplay between particle shape and direction of the magnetic moment can give rise to unusual behaviors, in particular when the moment is not aligned along a particle symmetry axis. Here we disclose for the first time the unique magnetic properties of hematite cubic particles and show the exact orientation of the cubes' dipole moment. Using a combination of experiments and computer simulations, we show that dipolar hematite cubes self-organize into dipolar chains with morphologies remarkably different from those of spheres, and demonstrate that the emergence of these structures is driven by competing anisotropic interactions caused by the particles' shape anisotropy and their fixed dipole moment. Furthermore, we have analytically identified a specific interplay between energy, and entropy at the microscopic level and found that an unorthodox entropic contribution mediates the organization of particles into the kinked nature of the dipolar chains.more » « less
-
The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was found to be substantially higher than those of the discrete nanoparticle systems. The frequencies of the dominant relaxation mechanisms were determined by magnetic susceptibility measurements in the frequency range of 100 Hz–7 GHz. The loss mechanisms were identified in terms of Brownian relaxation (1 kHz–10 kHz) and gyromagnetic resonance of Fe3O4 (~1.12 GHz). It was observed that the microwave absorption of the Fe3O4 nanoparticles depend on the local environment surrounding the NPs, as well as the long-range dipole–dipole interactions. These significant findings will be profoundly important in magnetic hyperthermia medical therapeutics and energy applications.more » « less