skip to main content


Title: Pedagogical Affordance Analysis: Leveraging teachers’ pedagogical knowledge for eliciting pedagogical affordances and constraints of instructional tools
When designing an instructional tool and using it in pedagogical activities, it is essential that designers and users understand what pedagogical affordances and constraints the tool provides to support its successful integration into targeted pedagogical activities. Toward this end, we developed Pedagogical Affordance Analysis (PAA). PAA involves analyzing teachers’ Pedagogical Content Knowledge and/or Technological Pedagogical Content Knowledge to elicit pedagogical affordances and constraints that are specific to a given instructional goal. Information obtained through PAA can help in designing, refining, and/or evaluating instructional tools. We present a case study in which we used PAA to successfully design a visual representation for middle-school algebra. To the best of our knowledge, PAA is the only available systematic method that leverages teachers’ pedagogical knowledge in identifying pedagogical affordances and constraints. PAA can be used across a wide range of existing tools and prototypes of to-be-designed tools.  more » « less
Award ID(s):
1760922
NSF-PAR ID:
10167053
Author(s) / Creator(s):
Date Published:
Journal Name:
14th International Conference of the Learning Sciences, ICLS 2020
Volume:
3
ISSN:
1573-4552
Page Range / eLocation ID:
1561-64
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. ; Horn, I. S. (Ed.)
    When designing an instructional tool and using it in pedagogical activities, it is essential that designers and users understand what pedagogical affordances and constraints the tool provides to support its successful integration into targeted pedagogical activities. Toward this end, we developed Pedagogical Affordance Analysis (PAA). PAA involves analyzing teachers’ Pedagogical Content Knowledge and/or Technological Pedagogical Content Knowledge to elicit pedagogical affordances and constraints that are specific to a given instructional goal. Information obtained through PAA can help in designing, refining, and/or evaluating instructional tools. We present a case study in which we used PAA to successfully design a visual representation for middle-school algebra. To the best of our knowledge, PAA is the only available systematic method that leverages teachers’ pedagogical knowledge in identifying pedagogical affordances and constraints. PAA can be used across a wide range of existing tools and prototypes of to-be-designed tools. 
    more » « less
  2. Researchers have typically identified and characterized teachers’ knowledge bases ( e.g. , pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense). PedChemSense theoretically expands upon the RCM that generates actionable guidelines to support chemsistry teachers’ lesson planning. We incorporate the constructs of sensemaking, Johnstone's triangle, and the models for perspective to provide a lesson-planning mechanism that is specific, accessible, and practical, respectively. Lesson examples from our own professional development contexts, the VisChem Institute, demonstrate the efficacy of PedChemSense. By leveraging teachers’ sensemaking of the limitations and utility of models, PedChemSense facilitates teachers’ designing for opportunities to advance their students’ chemistry conceptual understanding. Implications and recommendations for chemistry instruction and research at secondary and undergraduate levels are discussed. 
    more » « less
  3. In this work-in-progress paper, we continue investigation into the propagation of the Concept Warehouse within mechanical engineering (Friedrichsen et al., 2017; Koretsky et al., 2019a). Even before the pandemic forced most instruction online, educational technology was a growing element in classroom culture (Koretsky & Magana, 2019b). However, adoption of technology tools for widespread use is often conceived from a turn-key lens, with professional development focused on procedural competencies and fidelity of implementation as the goal (Mills & Ragan, 2000; O’Donnell, 2008). Educators are given the tool with initial operating instructions, then left on their own to implement it in particular instructional contexts. There is little emphasis on the inevitable instructional decisions around incorporating the tool (Hodge, 2019) or on sustainable incorporation of technologies into existing instructional practice (Forkosh-Baruch et al., 2021). We consider the take-up of a technology tool as an emergent, rather than a prescribed process (Henderson et al., 2011). In this WIP paper, we examine how two instructors who we call Al and Joe reason through their adoption of a technology tool, focusing on interactions among instructors, tool, and students within and across contexts. The Concept Warehouse (CW) is a widely-available, web-based, open educational technology tool used to facilitate concept-based active learning in different contexts (Friedrichsen et al., 2017; Koretsky et al., 2014). Development of the CW is ongoing and collaboration-driven, where user-instructors from different institutions and disciplines can develop conceptual questions (called ConcepTests) and other learning and assessment tools that can be shared with other users. Currently there are around 3,500 ConcepTests, 1,500 faculty users, and 36,000 student users. About 700 ConcepTests have been developed for mechanics (statics and dynamics). The tool’s spectrum of affordances allows different entry points for instructor engagement, but also allows their use to grow and change as they become familiar with the tool and take up ideas from the contexts around them. Part of a larger study of propagation and use across five diverse institutions (Nolen & Koretsky, 2020), instructors were introduced to the tool, offered an introductory workshop and opportunity to participate in a community of practice (CoP), then interviewed early and later in their adoption. For this paper, we explore a bounded case study of the two instructors, Al and Joe, who took up the CW to teach Introductory Statics. Al and Joe were experienced instructors, committed to active learning, who presented examples from their ongoing adaptation of the tool for discussion in the community of practice. However, their decisions about how to integrate the tool fundamentally differed, including the aspects of the tool they took up and the ways they made sense of their use. In analyzing these two cases, we begin to uncover how these instructors navigated the dynamic nature of pedagogical decision making in and across contexts. 
    more » « less
  4. It has been well-established that concept-based active learning strategies increase student retention, improve engagement and student achievement, and reduce the performance gap of underrepresented students. Despite the evidence supporting concept-based instruction, many faculty continue to stress algorithmic problem solving. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. Our project aims to propagate the Concept Warehouse (CW), an online innovation tool that was developed in the Chemical Engineering community, into Mechanical Engineering (ME). A portion of our work focuses on content development in mechanics, and includes statics, dynamics, and to a lesser extent strength of materials. Our content development teams had created 170 statics and 253 dynamics questions. Additionally, we have developed four different simulations to be embedded in online Instructional Tools – these are interactive modules that provided different physical scenarios to help students understand important concepts in mechanics. During initial interviews, we found that potential adopters needed coaching on the benefits of concept-based instruction, training on how to use the CW, and support on how to best implement the different affordances offered by the CW. This caused a slight shift in our initial research plans, and much of our recent work has concentrated on using faculty development activities to help us advertise the CW and encourage evidence-based practices. From these activities, we are recruiting participants for surveys and interviews to help us investigate how different contexts affect the adoption of educational innovations. A set of two summer workshops attracted over 270 applicants, and over 60 participants attended each synchronous offering. Other applicants were provided links to recordings of the workshop. From these participants, we recruited 20 participants to join our Community of Practice (CoP). These members are sharing how they use the CW in their classes, especially in the virtual environment. Community members discuss using evidence-based practices, different things that the CW can do, and suggest potential improvements to the tool. They will also be interviewed to help us determine barriers to adoption, how their institutional contexts and individual epistemologies affect adoption, and how they have used the CW in their classes. Our research will help us formulate strategies that others can use when attempting to propagate pedagogical innovations. 
    more » « less
  5. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less