skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pedagogical Affordance Analysis: Leveraging Teachers’ Pedagogical Knowledge to Elicit Pedagogical Affordances and Constraints of Instructional Tools
When designing an instructional tool and using it in pedagogical activities, it is essential that designers and users understand what pedagogical affordances and constraints the tool provides to support its successful integration into targeted pedagogical activities. Toward this end, we developed Pedagogical Affordance Analysis (PAA). PAA involves analyzing teachers’ Pedagogical Content Knowledge and/or Technological Pedagogical Content Knowledge to elicit pedagogical affordances and constraints that are specific to a given instructional goal. Information obtained through PAA can help in designing, refining, and/or evaluating instructional tools. We present a case study in which we used PAA to successfully design a visual representation for middle-school algebra. To the best of our knowledge, PAA is the only available systematic method that leverages teachers’ pedagogical knowledge in identifying pedagogical affordances and constraints. PAA can be used across a wide range of existing tools and prototypes of to-be-designed tools.  more » « less
Award ID(s):
1760947
PAR ID:
10232794
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Gresalfi, M.; Horn, I. S.
Date Published:
Journal Name:
The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
Volume 3
Page Range / eLocation ID:
1561-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When designing an instructional tool and using it in pedagogical activities, it is essential that designers and users understand what pedagogical affordances and constraints the tool provides to support its successful integration into targeted pedagogical activities. Toward this end, we developed Pedagogical Affordance Analysis (PAA). PAA involves analyzing teachers’ Pedagogical Content Knowledge and/or Technological Pedagogical Content Knowledge to elicit pedagogical affordances and constraints that are specific to a given instructional goal. Information obtained through PAA can help in designing, refining, and/or evaluating instructional tools. We present a case study in which we used PAA to successfully design a visual representation for middle-school algebra. To the best of our knowledge, PAA is the only available systematic method that leverages teachers’ pedagogical knowledge in identifying pedagogical affordances and constraints. PAA can be used across a wide range of existing tools and prototypes of to-be-designed tools. 
    more » « less
  2. Researchers have typically identified and characterized teachers’ knowledge bases ( e.g. , pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense). PedChemSense theoretically expands upon the RCM that generates actionable guidelines to support chemsistry teachers’ lesson planning. We incorporate the constructs of sensemaking, Johnstone's triangle, and the models for perspective to provide a lesson-planning mechanism that is specific, accessible, and practical, respectively. Lesson examples from our own professional development contexts, the VisChem Institute, demonstrate the efficacy of PedChemSense. By leveraging teachers’ sensemaking of the limitations and utility of models, PedChemSense facilitates teachers’ designing for opportunities to advance their students’ chemistry conceptual understanding. Implications and recommendations for chemistry instruction and research at secondary and undergraduate levels are discussed. 
    more » « less
  3. Abstract There is strong agreement in science teacher education of the importance of teachers' content knowledge for teaching (CKT), which includes their subject matter knowledge and their pedagogical content knowledge. However, there are limited instruments that can be easily administered and scored on a large scale to assess and study elementary science teachers' CKT. Such measures would support strategic monitoring of large groups of science teachers' CKT and the investigation of comparative questions about science teachers' CKT longitudinally across the professional continuum or across teacher education or professional development sites. To address this gap, this study focused on designing an automatically scorable summative assessment that can be used to measure preservice elementary teachers' (PSETs') CKT in one high‐leverage science content area: matter and its interactions. We conducted a field test of this CKT instrument with 822 PSETs from across the United States and used the response data to examine how this instrument functions as a potential tool for measuring PSETs' CKT in this science content area. Results suggest this instrument is reliable and can be used on large scale to support valid inferences about PSETs' CKT in this content area. In addition, the dimensionality analysis showed that all items measure a single construct of CKT about matter and its interactions, as participants did not show any differential performance by content topic or work of teaching science instructional tool categories. Implications for progressing the field's understanding of the nature of CKT and approaches to developing summative instruments to assess science teachers' CKT are discussed. 
    more » « less
  4. Pedagogical content knowledge (PCK) is specialized knowledge necessary to teach a subject. PCK integrates subject-matter content knowledge with knowledge of students and of teaching strategies so that teachers can perform the daily tasks of teaching. Studies in mathematics education have found correlations between measures of PCK and student learning. Finding robust, scalable ways for developing and measuring computer science (CS) teachers’ PCK is particularly important in CS education in the United States, given the lack of formal CS teacher preparation programs and certifications. However, measuring pedagogical content knowledge is a challenge for all subject areas. It can be difficult to write assessment items that elicit the different aspects of PCK and there are often multiple appropriate pedagogical choices in any given teaching scenario. In this paper, we describe a framework and pilot data from a questionnaire intended to elicit PCK from teachers of high school introductory CS courses and we propose future directions for this work. 
    more » « less
  5. null (Ed.)
    Issue-based learning is a pedagogical approach that features learning opportunities contextualized in compelling, societal issues that face students in their lives beyond school. COVID-19 is a global health emergency and represents the kind of societal challenge that can serve as the basis for issue-based learning. In this project, we facilitated teacher professional development in the midst of the COVID-19 pandemic with the aim of collaboratively designing instructional activities to teach about COVID-19. We used videoconferencing technologies to carry out the professional development in the wake of school and university closures. Breakout rooms within the videoconferencing platform and an online collaborative space were particularly important for the successful enactment of this program. The group was able to design four instructional activities each of which incorporates different forms of technology. These activities include a computational simulation, tools for perspective taking, a mathematical model created through a spreadsheet, and media and information literacy tools. Implications for similar forms of professional development include teacher recruitment decisions, flexibility in the face of evolving circumstances, focusing on affordances of technology platforms, and responding to teacher concerns. 
    more » « less